
Donatella Spinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustained visuospatial attention enhances lateralized anticipatory ERP activity in sensory areas. Brain Structure and Function, 2021, 226, 457-470.	1.2	7
2	Preparatory ERPs in visual, auditory, and somatosensory discriminative motor tasks. Psychophysiology, 2020, 57, e13687.	1.2	9
3	Testing the Specificity of Predictors of Reading, Spelling and Maths: A New Model of the Association Among Learning Skills Based on Competence, Performance and Acquisition. Frontiers in Human Neuroscience, 2020, 14, 573998.	1.0	6
4	Predicting individual differences in reading, spelling and maths in a sample of typically developing children: A study in the perspective of comorbidity. PLoS ONE, 2020, 15, e0231937.	1.1	13
5	Prompting future events: Effects of temporal cueing and time on task on brain preparation to action. Brain and Cognition, 2020, 141, 105565.	0.8	13
6	Proactive Cortical Control in Spinal Cord Injury Subjects with Paraplegia. Journal of Neurotrauma, 2019, 36, 3347-3355.	1.7	8
7	Perceptual load in decision making: The role of anterior insula and visual areas. An ERP study. Neuropsychologia, 2019, 129, 65-71.	0.7	18
8	Electrophysiological evidence of sustained spatial attention effects over anterior cortex: Possible contribution of the anterior insula. Psychophysiology, 2019, 56, e13369.	1.2	16
9	Reading and lexical-decision tasks generate different patterns of individual variability as a function of condition difficulty. Psychonomic Bulletin and Review, 2018, 25, 1161-1169.	1.4	8
10	Awareness of perception and sensory–motor integration: ERPs from the anterior insula. Brain Structure and Function, 2018, 223, 3577-3592.	1.2	23
11	Missing the Target: the Neural Processing Underlying the Omission Error. Brain Topography, 2017, 30, 352-363.	0.8	30
12	Slowing in reading and picture naming: the effects of aging and developmental dyslexia. Experimental Brain Research, 2017, 235, 3093-3109.	0.7	11
13	Brain waves from an "isolated―cortex: contribution of the anterior insula to cognitive functions. Brain Structure and Function, 2017, 223, 1343-1355.	1.2	19
14	Editorial: Understanding Developmental Dyslexia: Linking Perceptual and Cognitive Deficits to Reading Processes. Frontiers in Human Neuroscience, 2016, 10, 140.	1.0	12
15	How the brain prevents a second error in a perceptual decision-making task. Scientific Reports, 2016, 6, 32058.	1.6	31
16	Rhythmic modulation of visual contrast discrimination triggered by action. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160692.	1.2	52
17	Spatiotemporal brain mapping during preparation, perception, and action. Neurolmage, 2016, 126, 1-14.	2.1	94
18	Perceptual and Cognitive Factors Imposing "Speed Limits―on Reading Rate: A Study with the Rapid Serial Visual Presentation, PLoS ONE, 2016, 11, e0153786.	1.1	16

#	Article	IF	CITATIONS
19	The premotor role of the prefrontal cortex in response consistency Neuropsychology, 2015, 29, 767-775.	1.0	34
20	Stimulus onset predictability modulates proactive action control in a Go/No-go task. Frontiers in Behavioral Neuroscience, 2015, 9, 101.	1.0	15
21	Discrete versus multiple word displays: a re-analysis of studies comparing dyslexic and typically developing children. Frontiers in Psychology, 2015, 6, 1530.	1.1	23
22	Failure to learn a new spatial format in children with developmental dyslexia. Scientific Reports, 2015, 4, 4869.	1.6	8
23	Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action. Journal of Neuroscience, 2015, 35, 7019-7029.	1.7	97
24	Why do we make mistakes? Neurocognitive processes during the preparation–perception–action cycle and error-detection. NeuroImage, 2015, 113, 320-328.	2.1	39
25	I know what I will see: action-specific motor preparation activity in a passive observation task. Social Cognitive and Affective Neuroscience, 2015, 10, 783-789.	1.5	9
26	Modeling individual differences in text reading fluency: a different pattern of predictors for typically developing and dyslexic readers. Frontiers in Psychology, 2014, 5, 1374.	1.1	28
27	Benefits of Physical Exercise on Basic Visuo-Motor Functions Across Age. Frontiers in Aging Neuroscience, 2014, 6, 48.	1.7	49
28	Individual differences in response speed and accuracy are associated to specific brain activities of two interacting systems. Frontiers in Behavioral Neuroscience, 2014, 8, 251.	1.0	70
29	Bridging the gap between different measures of the reading speed deficit in developmental dyslexia. Experimental Brain Research, 2014, 232, 237-252.	0.7	17
30	The motor preparation of directionally incompatible movements. NeuroImage, 2014, 91, 33-42.	2.1	13
31	Multiple stimulus presentation yields larger deficits in children with developmental dyslexia: A study with reading and RAN-type tasks. Child Neuropsychology, 2013, 19, 639-647.	0.8	46
32	Hemispheric differences in VEPs to lateralised stimuli are a marker of recovery from neglect. Cortex, 2013, 49, 931-939.	1.1	9
33	The Effects of Aging on Conflict Detection. PLoS ONE, 2013, 8, e56566.	1.1	58
34	Transcutaneous Electrical Nerve Stimulation Effects on Neglect: A Visual-Evoked Potential Study. Frontiers in Human Neuroscience, 2013, 7, 111.	1.0	7
35	The eye-voice lead during oral reading in developmental dyslexia. Frontiers in Human Neuroscience, 2013, 7, 696.	1.0	31
36	Neural Correlates of Attentional and Executive Processing in Middle-Age Fencers. Medicine and Science in Sports and Exercise, 2012, 44, 1057-1066.	0.2	70

#	Article	IF	CITATIONS
37	Awareness affects motor planning for goal-oriented actions. Biological Psychology, 2012, 89, 503-514.	1.1	43
38	Spatio-temporal mapping of motor preparation for self-paced saccades. Biological Psychology, 2012, 90, 10-17.	1.1	8
39	Prefrontal hyperactivity in older people during motor planning. NeuroImage, 2012, 62, 1750-1760.	2.1	131
40	Similar Cerebral Motor Plans for Real and Virtual Actions. PLoS ONE, 2012, 7, e47783.	1.1	27
41	Spatiotemporal brain mapping of spatial attention effects on patternâ€reversal ERPs. Human Brain Mapping, 2012, 33, 1334-1351.	1.9	56
42	Ocular Dominance Stability and Reading Skill: A Controversial Relationship. Optometry and Vision Science, 2011, 88, 1353-1362.	0.6	14
43	Studying space representation within a neuropsychological perspective. Experimental Brain Research, 2010, 206, 105-108.	0.7	0
44	Sport is not always healthy: Executive brain dysfunction in professional boxers. Psychophysiology, 2010, 47, 425-434.	1.2	39
45	Letter and letter-string processing in developmental dyslexia. Cortex, 2010, 46, 1272-1283.	1.1	52
46	Benefits of Sports Participation for Executive Function in Disabled Athletes. Journal of Neurotrauma, 2010, 27, 2309-2319.	1.7	96
47	Crowding, reading, and developmental dyslexia. Journal of Vision, 2009, 9, 14-14.	0.1	171
48	Measuring fixation disparity with infrared eye-trackers. Journal of Biomedical Optics, 2009, 14, 014013.	1.4	6
49	Subtypes of developmental dyslexia in transparent orthographies: A comment on Lachmann and Van Leeuwen (2008). Cognitive Neuropsychology, 2009, 26, 752-758.	0.4	7
50	Isolating global and specific factors in developmental dyslexia: a study based on the rate and amount model (RAM). Experimental Brain Research, 2008, 186, 551-560.	0.7	45
51	Impaired visual processing of contralesional stimuli in neglect patients: a visual-evoked potential study. Brain, 2008, 131, 842-854.	3.7	62
52	Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential. Human Brain Mapping, 2007, 28, 323-334.	1.9	269
53	Lexicality and Stimulus Length Effects in Italian Dyslexics: Role of the Overadditivity Effect. Child Neuropsychology, 2006, 12, 141-149.	0.8	49
54	Naming Speed and Visual Search Deficits in Readers With Disabilities: Evidence From an Orthographically Regular Language (Italian). Developmental Neuropsychology, 2006, 30, 885-904.	1.0	35

#	Article	IF	CITATIONS
55	Neural correlates of fast stimulus discrimination and response selection in top-level fencers. Neuroscience Letters, 2006, 408, 113-118.	1.0	160
56	Latency of Prosaccades and Antisaccades in Professional Shooters. Medicine and Science in Sports and Exercise, 2006, 38, 388-394.	0.2	15
57	Effect of Practice on Brain Activity: An Investigation in Top-Level Rifle Shooters. Medicine and Science in Sports and Exercise, 2005, 37, 1586-1593.	0.2	74
58	Word length effect in early reading and in developmental dyslexia. Brain and Language, 2005, 93, 369-373.	0.8	181
59	Loss of visual information in neglect: the effect of chromatic- versus luminance-contrast stimuli in a "what―task. Experimental Brain Research, 2005, 163, 527-534.	0.7	4
60	Rapid naming, not cancellation speed or articulation rate, predicts reading in an orthographically regular language (Italian). Child Neuropsychology, 2005, 11, 349-361.	0.8	79
61	Length Effect in Word Naming in Reading: Role of Reading Experience and Reading Deficit in Italian Readers. Developmental Neuropsychology, 2005, 27, 217-235.	1.0	123
62	Identification of the neural sources of the pattern-reversal VEP. NeuroImage, 2005, 24, 874-886.	2.1	239
63	Underestimation of contralateral space in neglect: a deficit in the "where―task. Experimental Brain Research, 2004, 159, 319-328.	0.7	3
64	Different attentional resources modulate the gain mechanisms for color and luminance contrast. Vision Research, 2004, 44, 1389-1401.	0.7	60
65	Characteristics of Writing Disorders in Italian Dyslexic Children. Cognitive and Behavioral Neurology, 2004, 17, 18-31.	0.5	61
66	Fixation stability and saccadic latency in $ ilde{A}$ [lite shooters. Vision Research, 2003, 43, 1837-1845.	0.7	77
67	Training of developmental surface dyslexia improves reading performance and shortens eye fixation duration in reading. Neuropsychological Rehabilitation, 2002, 12, 177-197.	1.0	66
68	Reading Words and Pseudowords: An Eye Movement Study of Developmental Dyslexia. Brain and Language, 2002, 80, 617-626.	0.8	161
69	Effects of sustained, voluntary attention on amplitude and latency of steady-state visual evoked potential: a costs and benefits analysis. Clinical Neurophysiology, 2002, 113, 1771-1777.	0.7	39
70	Crowding Effects on Word Identification in Developmental Dyslexia. Cortex, 2002, 38, 179-200.	1.1	147
71	Color and Luminance Contrasts Attract Independent Attention. Current Biology, 2002, 12, 1134-1137.	1.8	90
72	Automatic gain control contrast mechanisms are modulated by attention in humans: evidence from visual evoked potentials. Vision Research, 2001, 41, 2435-2447.	0.7	111

#	Article	IF	CITATIONS
73	Large Errors in the Perception of Verticality are Generated by Luminance Borders (Integrated across) Tj ETQq1	1 0.784314 0.5	rgBT /Overlo
74	Influence of the radial and vertical dimensions on lateral neglect. Experimental Brain Research, 2001, 136, 281-294.	0.7	55
75	Markers of developmental surface dyslexia in a language (Italian) with high grapheme–phoneme correspondence. Applied Psycholinguistics, 1999, 20, 191-216.	0.8	167
76	Eye movement patterns in linguistic and non-linguistic tasks in developmental surface dyslexia. Neuropsychologia, 1999, 37, 1407-1420.	0.7	156
77	Electrophysiological evidence for an early attentional mechanism in visual processing in humans. Vision Research, 1999, 39, 2975-2985.	0.7	147
78	Spatial attention has different effects on the magno- and parvocellular pathways. NeuroReport, 1999, 10, 2755-2762.	0.6	39
79	Hierarchical Organisation in Perception of Orientation. Perception, 1999, 28, 965-979.	0.5	7
80	Hierarchical organisation in perception of orientation. Perception, 1999, 28, 965-979.	0.5	5
81	Contrast Sensitivity Loss in The Neglected Hemifield. Cortex, 1998, 34, 139-145.	1.1	11
82	Frame-of-Reference and Hierarchical-Organisation Effects in the Rod-and-Frame Illusion. Perception, 1997, 26, 1485-1494.	0.5	20
83	Developmental surface dyslexia is not associated with deficits in the transient visual system. NeuroReport, 1997, 8, 1807-1812.	0.6	57
84	Vertical Neglect: Behavioral and Electrophysiological Data. Cortex, 1997, 33, 679-688.	1.1	58
85	Eye Movement Patterns in Reading as a Function of Visual Field Defects and Contrast Sensitivity Loss. Cortex, 1996, 32, 491-502.	1.1	31
86	VEP in neglect patients have longer latencies for luminance but not for chromatic patterns. NeuroReport, 1996, 7, 815-819.	0.6	28
87	Visual evoked potentials are affected by trunk rotation in neglect patients. NeuroReport, 1996, 7, 553-556.	0.6	25
88	Neglect for low luminance contrast stimuli but not for high colour contrast stimuli. NeuroReport, 1996, 7, 1360-1364.	0.6	12
89	Early visual processing in neglect patients: A study with steady-state VEPs. Neuropsychologia, 1996, 34, 1151-1157.	0.7	39
90	Modulation of the Rod-And-Frame Illusion by Additional External Stimuli. Perception, 1995, 24, 1105-1118.	0.5	18

#	Article	IF	CITATIONS
91	Visual Factors Affecting the Rod-And-Frame Illusion: Role of Gap Size and Frame Components. Perception, 1995, 24, 1119-1130.	0.5	18
92	Local and global visual mechanisms underlying individual differences in the rod-and-frame illusion. Perception & Psychophysics, 1995, 57, 915-920.	2.3	25
93	Selective reading slowness in a traumatic patient with impairment in basic visual processes. Journal of Clinical and Experimental Neuropsychology, 1995, 17, 878-899.	0.8	5
94	Pattern-Reversal Visual-Evoked Potentials in Patients with Hemineglect Syndrome. Brain and Cognition, 1995, 27, 17-35.	0.8	22
95	Spatial neglect is associated with increased latencies of visual evoked potentials. Visual Neuroscience, 1994, 11, 909-918.	0.5	91
96	The gap between rod and frame influences the rod-and-frame effect with small and large inducing displays. Perception & Psychophysics, 1993, 54, 14-19.	2.3	39
97	The role of frame size on vertical and horizontal observers in the rod-and-frame illusion. Acta Psychologica, 1992, 79, 171-187.	0.7	36
98	Perception of moving and stationary gratings in brain damaged patients with unilateral spatial neglect. Neuropsychologia, 1992, 30, 393-401.	0.7	16
99	Contirast and Hemispheric Asymmetry: An Electrophysiological Investigation. International Journal of Neuroscience, 1990, 50, 113-119.	0.8	6
100	The Effects of Visual Field Size on Hemispheric Asymmetry of Pattern Reversal Visual Evoked Potentials. International Journal of Neuroscience, 1990, 51, 141-151.	0.8	12
101	Contrast sensitivity and low spatial frequency discrimimation in hemi-neglect patients. Neuropsychologia, 1990, 28, 727-732.	0.7	13
102	Handedness and hemispheric asymmetry of pattern reversal visual-evoked potentials. Brain and Cognition, 1990, 13, 193-210.	0.8	15
103	Evidence for edge and bar detectors in human vision. Vision Research, 1989, 29, 419-431.	0.7	118
104	Discrimination of spatial phase in central and peripheral vision. Vision Research, 1989, 29, 433-445.	0.7	49
105	Left—Right Visual Field Asymmetry in Bistable Motion Perception. Perception, 1988, 17, 721-727.	0.5	15
106	Hemispheric asymmetry of pattern reversal visual evoked potentials in healthy subjects. International Journal of Psychophysiology, 1987, 4, 325-328.	0.5	21
107	Orientation Sensitivity in the Peripheral Visual Field. Perception, 1984, 13, 41-47.	0.5	16
108	Contrast summation in dichoptic vision. Psychological Research, 1983, 45, 1-10.	1.0	1

7

#	Article	IF	CITATIONS
109	Visual acuity in the young infant is highest in a small retinal area. Vision Research, 1983, 23, 1133-1136.	0.7	20
110	Electrophysiological evidence for spatial frequency selective mechanisms in adults and infants. Vision Research, 1983, 23, 119-127.	0.7	41
111	Development of retinal and cortical responses to pattern reversal in infants: A selective review. Behavioural Brain Research, 1983, 10, 99-106.	1.2	18
112	Contrast influence on perceived orientation. Vision Research, 1982, 22, 783-785.	0.7	4
113	An electrophysiological correlate of perceptual suppression in anisometropia. Vision Research, 1978, 18, 1617-1621.	0.7	13
114	Infant contrast sensitivity evaluated by evoked potentials. Brain Research, 1978, 141, 179-184.	1.1	118
115	The effects of spatial frequency adaptation on human evoked potentials. Vision Research, 1976, 16, 477-479.	0.7	35
116	Lines and gratings: Different interocular after-effects. Vision Research, 1976, 16, 1303-1309.	0.7	8