
Karunakaran A Kalesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptome-Wide Identification of Coding and Noncoding RNA-Binding Proteins Defines the Comprehensive RNA Interactome of Leishmania mexicana. Microbiology Spectrum, 2022, 10, e0242221.	1.2	8
2	Affinityâ€based proteomics reveals novel targets of inositol pyrophosphate (5â€IP 7)â€dependent phosphorylation and binding in Trypanosoma cruzi replicative stages. Molecular Microbiology, 2021, 115, 986-1004.	1.2	5
3	Quantitative Proteomics Reveals that Hsp90 Inhibition Dynamically Regulates Global Protein Synthesis in Leishmania mexicana. MSystems, 2021, 6, .	1.7	10
4	Antileishmanial Drug Development: A Review of Modern Molecular Chemical Tools and Research Strategies. Current Medicinal Chemistry, 2021, 28, 6337-6357.	1.2	1
5	Detectives and helpers: Natural products as resources for chemical probes and compound libraries. , 2020, 216, 107688.		11
6	Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Medicinal Chemistry, 2020, 11, 625-645.	1.7	18
7	How can proteomics overhaul our understanding of Leishmania biology?. Expert Review of Proteomics, 2020, 17, 789-792.	1.3	2
8	The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics, 2019, 8, 8.	1.5	67
9	An Integrated Chemical Proteomics Approach for Quantitative Profiling of Intracellular ADP-Ribosylation. Scientific Reports, 2019, 9, 6655.	1.6	26
10	A BONCAT-iTRAQ method enables temporally resolved quantitative profiling of newly synthesised proteins in Leishmania mexicana parasites during starvation. PLoS Neglected Tropical Diseases, 2019, 13, e0007651.	1.3	10
11	The Medicinal Chemistry of Therapeutic Peptides: Recent Developments in Synthesis and Design Optimizations. Current Medicinal Chemistry, 2019, 26, 2330-2355.	1.2	12
12	Competition-based, quantitative chemical proteomics in breast cancer cells identifies new target profiles for sulforaphane. Chemical Communications, 2017, 53, 5182-5185.	2.2	30
13	Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Medicinal Research Reviews, 2017, 37, 1492-1517.	5.0	178
14	Recent Advances in Synthesis and Identification of Cyclic Peptides for Bioapplications. Current Topics in Medicinal Chemistry, 2017, 17, 2302-2318.	1.0	28
15	A capillary electrophoresis method to explore the selfâ€assembly of a novel polypeptide ligand with quantum dots. Electrophoresis, 2016, 37, 2156-2162.	1.3	20
16	Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. , 2016, 162, 10-22.		93
17	Target profiling of zerumbone using a novel cell-permeable clickable probe and quantitative chemical proteomics. Chemical Communications, 2015, 51, 5497-5500.	2.2	26
18	Global profiling of protein lipidation using chemical proteomic technologies. Current Opinion in Chemical Biology, 2015, 24, 48-57.	2.8	90

KARUNAKARAN A KALESH

#	Article	IF	CITATIONS
19	A succinyl lysine-based photo-cross-linking peptide probe for Sirtuin 5. Organic and Biomolecular Chemistry, 2014, 12, 4310-4313.	1.5	10
20	Key cell signaling pathways modulated by zerumbone: Role in the prevention and treatment of cancer. Biochemical Pharmacology, 2012, 84, 1268-1276.	2.0	125
21	Synthesis of 2,3,5-trisubstituted furans from α-formylaroylketene dithioacetals. Tetrahedron Letters, 2011, 52, 1667-1669.	0.7	15
22	Peptide-based activity-based probes (ABPs) for target-specific profiling of proteintyrosine phosphatases (PTPs). Chemical Communications, 2010, 46, 589-591.	2.2	51
23	The use of click chemistry in the emerging field of catalomics. Organic and Biomolecular Chemistry, 2010, 8, 1749.	1.5	54
24	Small molecule probes that target Ablkinase. Chemical Communications, 2010, 46, 1118-1120.	2.2	33
25	High-throughput synthesis of azide libraries suitable for direct "click―chemistry and in situ screening. Organic and Biomolecular Chemistry, 2009, 7, 1821.	1.5	56
26	High-Throughput Discovery of Mycobacterium tuberculosis Protein Tyrosine Phosphatase B (MptpB) Inhibitors Using Click Chemistry. Organic Letters, 2009, 11, 5102-5105.	2.4	64
27	Rapid synthesis of Abelson tyrosine kinase inhibitors using click chemistry. Organic and Biomolecular Chemistry, 2009, 7, 5129.	1.5	38
28	An Improved Mechanismâ€Based Crossâ€Linker for Multiplexed Kinase Detection and Inhibition in a Complex Proteome. ChemBioChem, 2008, 9, 1883-1888.	1.3	15
29	Methods of using click chemistry in the discovery of enzyme inhibitors. Nature Protocols, 2007, 2, 2655-2664.	5.5	47
30	Discovery of Leishmania Druggable Serine Proteases by Activity-Based Protein Profiling. Frontiers in Pharmacology, 0, 13, .	1.6	4