
Kai C Wollert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skeletal muscle derived Musclin protects the heart during pathological overload. Nature Communications, 2022, 13, 149.	5.8	27
2	Response by Wollert to Letter Regarding Article, "Myeloid-Derived Growth Factor Protects Against Pressure Overload-Induced Heart Failure― Circulation, 2022, 145, e770.	1.6	0
3	Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase. Science, 2022, 376, 1343-1347.	6.0	34
4	Angiogenesis after acute myocardial infarction. Cardiovascular Research, 2021, 117, 1257-1273.	1.8	146
5	Critical appraisal of the 2020 ESC guideline recommendations on diagnosis and risk assessment in patients with suspected non-ST-segment elevation acute coronary syndrome. Clinical Research in Cardiology, 2021, 110, 1353-1368.	1.5	8
6	Cardioprotection vs. regeneration: the case of extracellular vesicle-derived microRNAs. Basic Research in Cardiology, 2021, 116, 20.	2.5	1
7	Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis. Basic Research in Cardiology, 2021, 116, 26.	2.5	34
8	Circulating growth factors and cardiac remodeling in the community: The Framingham Heart Study. International Journal of Cardiology, 2021, 329, 217-224.	0.8	2
9	Myeloid-Derived Growth Factor Protects Against Pressure Overload–Induced Heart Failure by Preserving Sarco/Endoplasmic Reticulum Ca ²⁺ -ATPase Expression in Cardiomyocytes. Circulation, 2021, 144, 1227-1240.	1.6	27
10	A mouse model of cardiogenic shock. Cardiovascular Research, 2021, 117, 2414-2415.	1.8	2
11	Adenosine stress perfusion cardiac magnetic resonance imaging in patients undergoing intracoronary bone marrow cell transfer after ST-elevation myocardial infarction: the BOOST-2 perfusion substudy. Clinical Research in Cardiology, 2020, 109, 539-548.	1.5	2
12	Iron and atherosclerosis: too much of a good thing can be bad. European Heart Journal, 2020, 41, 2696-2698.	1.0	7
13	Multimodality Imaging of Inflammation and Ventricular Remodeling in Pressure-Overload Heart Failure. Journal of Nuclear Medicine, 2020, 61, 590-596.	2.8	23
14	Radionuclide Image-Guided Repair ofÂtheÂHeart. JACC: Cardiovascular Imaging, 2020, 13, 2415-2429.	2.3	29
15	¹¹ C-Methionine PET Identifies Astroglia Involvement in Heart–Brain Inflammation Networking After Acute Myocardial Infarction. Journal of Nuclear Medicine, 2020, 61, 977-980.	2.8	18
16	Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. European Heart Journal, 2020, 41, 3564-3575.	1.0	52
17	Cardiac iron concentration in relation to systemic iron status and disease severity in nonâ€ischaemic heart failure with reduced ejection fraction. European Journal of Heart Failure, 2020, 22, 2038-2046.	2.9	32
18	Pleiotropic cardiac functions controlled by ischemia-induced lncRNA H19. Journal of Molecular and Cellular Cardiology, 2020, 146, 43-59.	0.9	12

#	Article	IF	CITATIONS
19	Levels of Growth Differentiation Factor 15 and Early Mortality Risk Stratification in Cardiogenic Shock. Journal of Cardiac Failure, 2019, 25, 894-901.	0.7	6
20	Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem Cell Reports, 2019, 13, 366-379.	2.3	61
21	<scp>TIP</scp> 30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Molecular Medicine, 2019, 11, e10018.	3.3	17
22	Heparan Sulfate–Editing Extracellular Sulfatases Enhance VEGF Bioavailability for Ischemic Heart Repair. Circulation Research, 2019, 125, 787-801.	2.0	35
23	C-X-C Motif Chemokine Receptor 4 Blockade Promotes Tissue Repair After Myocardial Infarction by Enhancing Regulatory T Cell Mobilization and Immune-Regulatory Function. Circulation, 2019, 139, 1798-1812.	1.6	88
24	Crystal structure and receptor-interacting residues of MYDGF — a protein mediating ischemic tissue repair. Nature Communications, 2019, 10, 5379.	5.8	19
25	Plasma Concentrations of Myeloid-Derived Growth Factor in Healthy Individuals and Patients with Acute Myocardial Infarction as Assessed by Multiple Reaction Monitoring-Mass Spectrometry. Analytical Chemistry, 2019, 91, 1302-1308.	3.2	13
26	Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation. JCI Insight, 2019, 4, .	2.3	47
27	Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction. Journal of the American College of Cardiology, 2018, 71, 263-275.	1.2	199
28	Reg3Î ² is associated with cardiac inflammation and provides prognostic information in patients with acute coronary syndrome. International Journal of Cardiology, 2018, 258, 7-13.	0.8	9
29	Growth differentiation factorâ€15 reveals the dark side of heart failure. European Journal of Heart Failure, 2018, 20, 1710-1712.	2.9	2
30	Growth factor therapy to prevent postinfarction heart failure. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY4-4.	0.0	0
31	Changes in concentrations of circulating fibroblast activation protein alpha are associated with myocardial damage in patients with acute ST-elevation MI. International Journal of Cardiology, 2017, 232, 155-159.	0.8	15
32	Midregional proadrenomedullin and growth differentiation factor-15 are not influenced by obesity in heart failure patients. Clinical Research in Cardiology, 2017, 106, 401-410.	1.5	11
33	Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clinical Chemistry, 2017, 63, 140-151.	1.5	380
34	EMC10 (Endoplasmic Reticulum Membrane Protein Complex Subunit 10) Is a Bone Marrow–Derived Angiogenic Growth Factor Promoting Tissue Repair After Myocardial Infarction. Circulation, 2017, 136, 1809-1823.	1.6	32
35	Targeting of Extracellular RNA Reduces Edema Formation and Infarct Size and Improves Survival After Myocardial Infarction in Mice. Journal of the American Heart Association, 2017, 6, .	1.6	27
36	C1q-TNF-Related Protein-9 Promotes Cardiac Hypertrophy and Failure. Circulation Research, 2017, 120, 66-77.	2.0	77

#	Article	IF	CITATIONS
37	Biomarkers for characterization of heart failure – Distinction of heart failure with preserved and reduced ejection fraction. International Journal of Cardiology, 2017, 227, 272-277.	0.8	49
38	An Automated Assay for Growth Differentiation Factor 15. journal of applied laboratory medicine, The, 2017, 1, 510-521.	0.6	35
39	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	1.0	133
40	Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. European Heart Journal, 2017, 38, 2936-2943.	1.0	91
41	Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction. Theranostics, 2016, 6, 1768-1779.	4.6	56
42	Follistatin-Like 1. JACC Basic To Translational Science, 2016, 1, 222-223.	1.9	1
43	Biomarkers for the prediction of venous thromboembolism in the community. Thrombosis Research, 2016, 145, 34-39.	0.8	14
44	Early invasive versus non-invasive treatment in patients with non-ST-elevation acute coronary syndrome (FRISC-II): 15 year follow-up of a prospective, randomised, multicentre study. Lancet, The, 2016, 388, 1903-1911.	6.3	68
45	Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. European Heart Journal, 2016, 38, ehw333.	1.0	115
46	Prevalence, Neurohormonal Correlates, and Prognosis of Heart Failure Stages inÂthe Community. JACC: Heart Failure, 2016, 4, 808-815.	1.9	72
47	Evaluation of Temporal Changes in Cardiovascular Biomarker Concentrations Improves Risk Prediction in an Elderly Population from the Community. Clinical Chemistry, 2016, 62, 485-493.	1.5	17
48	Ischaemic risk and bleeding risk in acute coronary syndrome: still inseparable. European Heart Journal, 2016, 37, 1334-1336.	1.0	1
49	Bone marrow mononuclear cell therapy for acute myocardial infarction: we know what we want, but we just don't know how yet. Heart, 2015, 101, 337-338.	1.2	4
50	Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC: Cardiovascular Imaging, 2015, 8, 1417-1426.	2.3	159
51	Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nature Medicine, 2015, 21, 140-149.	15.2	168
52	Risk scores and biomarkers for the prediction of 1-year outcome after transcatheter aortic valve replacement. American Heart Journal, 2015, 170, 821-829.	1.2	43
53	Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations With Subclinical Vascular Brain Injury and Incident Stroke. Stroke, 2015, 46, 2568-2575.	1.0	54
54	Targeting post-infarct inflammation by PET imaging: comparison of 68Ga-citrate and 68Ga-DOTATATE with 18F-FDG in a mouse model. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 317-327.	3.3	60

#	Article	IF	CITATIONS
55	Ideal Cardiovascular Health. Circulation, 2014, 130, 1676-1683.	1.6	179
56	Biomarkers of Cardiovascular Stress and Subclinical Atherosclerosis in the Community. Clinical Chemistry, 2014, 60, 1402-1408.	1.5	24
57	Growth-differentiation factor 15 for long-term prognostication in patients with non-ST-elevation acute coronary syndrome: An Invasive versus Conservative Treatment in Unstable coronary Syndromes (ICTUS) substudy. International Journal of Cardiology, 2014, 172, 356-363.	0.8	35
58	Relation between soluble ST2, growth differentiation factor–15, and high-sensitivity troponin I and incident atrial fibrillation. American Heart Journal, 2014, 167, 109-115.e2.	1.2	85
59	Risk stratification in critically ill patients: GDF-15 scores in adult respiratory distress syndrome. Critical Care, 2013, 17, 173.	2.5	11
60	Clustering of 37 circulating biomarkers by exploratory factor analysis in patients following complicated acute myocardial infarction. International Journal of Cardiology, 2013, 166, 729-735.	0.8	32
61	Image-guided therapies for myocardial repair: concepts and practical implementation. European Heart Journal Cardiovascular Imaging, 2013, 14, 741-751.	0.5	16
62	Association of Novel Biomarkers of Cardiovascular Stress With Left Ventricular Hypertrophy and Dysfunction: Implications for Screening. Journal of the American Heart Association, 2013, 2, e000399.	1.6	66
63	Change in Growth Differentiation Factor 15 Concentrations over Time Independently Predicts Mortality in Community-Dwelling Elderly Individuals. Clinical Chemistry, 2013, 59, 1091-1098.	1.5	96
64	Incremental Prognostic Value of Biomarkers beyond the GRACE (Global Registry of Acute Coronary) Tj ETQq0 0 Clinical Chemistry, 2013, 59, 1497-1505.	0 rgBT /Ov 1.5	verlock 10 Tf 5 50
65	Biomarkers of Cardiovascular Stress and Incident Chronic Kidney Disease. Clinical Chemistry, 2013, 59, 1613-1620.	1.5	91
66	GDF-15 for Prognostication of Cardiovascular and Cancer Morbidity and Mortality in Men. PLoS ONE, 2013, 8, e78797.	1.1	108
67	Relations of growth-differentiation factor-15 to biomarkers reflecting vascular pathologies in a population-based sample of elderly subjects. Scandinavian Journal of Clinical and Laboratory Investigation, 2012, 72, 45-51.	0.6	35
68	Identification of Follistatin-Like 1 by Expression Cloning as an Activator of the Growth Differentiation Factor 15 Gene and a Prognostic Biomarker in Acute Coronary Syndrome. Clinical Chemistry, 2012, 58, 1233-1241.	1.5	46
69	Adjustment of the GRACE score by growth differentiation factor 15 enables a more accurate appreciation of risk in non-ST-elevation acute coronary syndrome. European Heart Journal, 2012, 33, 1095-1104.	1.0	88
70	GDFâ€15 in heart failure: providing insight into endâ€organ dysfunction and its recovery?. European Journal of Heart Failure, 2012, 14, 1191-1193.	2.9	13
71	Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese nondiabetic individuals: results from the XENDOS trial. European Journal of Endocrinology, 2012, 167, 671-678.	1.9	134
72	Tailored therapy for heart failure: the role of biomarkers. European Heart Journal, 2012, 33, 2246-2248.	1.0	6

#	Article	IF	CITATIONS
73	Prognostic Utility of Novel Biomarkers of Cardiovascular Stress. Circulation, 2012, 126, 1596-1604.	1.6	414
74	Clinical and Genetic Correlates of Growth Differentiation Factor 15 in the Community. Clinical Chemistry, 2012, 58, 1582-1591.	1.5	106
75	Growth Differentiation Factor 15 in Heart Failure: An Update. Current Heart Failure Reports, 2012, 9, 337-345.	1.3	95
76	Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. Journal of Molecular Medicine, 2012, 90, 361-369.	1.7	57
77	Growth Differentiation Factor-15 and Risk of Recurrent Events in Patients Stabilized After Acute Coronary Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 203-210.	1.1	138
78	Growth Differentiation Factor 15 Plasma Levels and Outcome after Ischemic Stroke. Cerebrovascular Diseases, 2011, 32, 72-78.	0.8	35
79	GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nature Medicine, 2011, 17, 581-588.	15.2	411
80	Conditional Transgenic Expression of Fibroblast Growth Factor 9 in the Adult Mouse Heart Reduces Heart Failure Mortality After Myocardial Infarction. Circulation, 2011, 123, 504-514.	1.6	60
81	Elevated Plasma Growth Differentiation Factor-15 Correlates with Lymph Node Metastases and Poor Survival in Endometrial Cancer. Clinical Cancer Research, 2011, 17, 4825-4833.	3.2	61
82	Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors. Journal of Clinical Investigation, 2011, 121, 703-714.	3.9	133
83	Bone Marrow Cell Therapy After Myocardial Infarction: What have we Learned from the Clinical Trials and Where Are We Going?. , 2011, , 111-129.		0
84	Growth differentiation factor-15 as a prognostic biomarker in ovarian cancer. Gynecologic Oncology, 2010, 118, 237-243.	0.6	74
85	Growth-Differentiation Factor-15 for Long-Term Risk Prediction in Patients Stabilized After an Episode of Non–ST-Segment–Elevation Acute Coronary Syndrome. Circulation: Cardiovascular Genetics, 2010, 3, 88-96.	5.1	82
86	Multiple marker approach to risk stratification in patients with stable coronary artery disease. European Heart Journal, 2010, 31, 3024-3031.	1.0	97
87	Long-term effects of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: 5-year results from the randomized-controlled BOOST trialan echocardiographic study. European Journal of Echocardiography, 2010, 11, 165-171.	2.3	68
88	Serial Measurement of Growth-Differentiation Factor-15 in Heart Failure. Circulation, 2010, 122, 1387-1395.	1.6	272
89	Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nature Reviews Cardiology, 2010, 7, 204-215.	6.1	237
90	Improving long-term risk prediction in patients with acute chest pain: The Global Registry of Acute Coronary Events (GRACE) risk score is enhanced by selected nonnecrosis biomarkers. American Heart Journal, 2010, 160, 88-94.	1.2	58

#	Article	IF	CITATIONS
91	Circulating Concentrations of Follistatin-Like 1 in Healthy Individuals and Patients with Acute Coronary Syndrome as Assessed by an Immunoluminometric Sandwich Assay. Clinical Chemistry, 2009, 55, 1794-1800.	1.5	63
92	Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. European Heart Journal, 2009, 30, 2978-2984.	1.0	286
93	Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. European Heart Journal, 2009, 30, 2346-2353.	1.0	206
94	Circulating and Placental Growth-Differentiation Factor 15 in Preeclampsia and in Pregnancy Complicated by Diabetes Mellitus. Hypertension, 2009, 54, 106-112.	1.3	55
95	Growth-Differentiation Factor-15 for Risk Stratification in Patients With Stable and Unstable Coronary Heart Disease. Circulation: Cardiovascular Genetics, 2009, 2, 286-292.	5.1	113
96	Growth Differentiation Factor-15: a New Biomarker in Cardiovascular Disease. Herz, 2009, 34, 594-599.	0.4	45
97	Growth-Differentiation Factor-15 in Heart Failure. Heart Failure Clinics, 2009, 5, 537-547.	1.0	64
98	Cell therapy for acute myocardial infarction. Current Opinion in Pharmacology, 2008, 8, 202-210.	1.7	30
99	Growth-differentiation factor-15 for early risk stratification in patients with acute chest pain. European Heart Journal, 2008, 29, 2327-2335.	1.0	66
100	Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. European Heart Journal, 2008, 29, 2851-2858.	1.0	191
101	Growth Differentiation Factor-15 for Prognostic Assessment of Patients with Acute Pulmonary Embolism. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1018-1025.	2.5	158
102	Potential novel pharmacological therapies for myocardial remodelling. Cardiovascular Research, 2008, 81, 519-527.	1.8	95
103	Growth Differentiation Factor-15 in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 534-541.	2.5	134
104	Circulating Concentrations of Growth-Differentiation Factor 15 in Apparently Healthy Elderly Individuals and Patients with Chronic Heart Failure as Assessed by a New Immunoradiometric Sandwich Assay. Clinical Chemistry, 2007, 53, 284-291.	1.5	245
105	Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. European Heart Journal, 2007, 28, 2858-2865.	1.0	193
106	Growth Differentiation Factor 15 for Risk Stratification and Selection of an Invasive Treatment Strategy in Non–ST-Elevation Acute Coronary Syndrome. Circulation, 2007, 116, 1540-1548.	1.6	203
107	Prognostic Value of Growth-Differentiation Factor-15 in Patients With Non–ST-Elevation Acute Coronary Syndrome. Circulation, 2007, 115, 962-971.	1.6	327
108	Prognostic Utility of Growth Differentiation Factor-15 in Patients With Chronic Heart Failure. Journal of the American College of Cardiology, 2007, 50, 1054-1060.	1.2	397

#	Article	IF	CITATIONS
109	Growth-differentiation factor-15 in cardiovascular disease. Basic Research in Cardiology, 2007, 102, 412-415.	2.5	39
110	The role of stem cells in the post-MI patient. Current Heart Failure Reports, 2007, 4, 198-203.	1.3	6
111	Cell-based therapy for heart failure. Current Opinion in Cardiology, 2006, 21, 234-239.	0.8	60
112	Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. European Heart Journal, 2006, 27, 929-935.	1.0	124
113	Bone-marrow-derived cell transfer after ST-elevation myocardial infarction: lessons from the BOOST trial. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, S65-S68.	3.3	36
114	Intracoronary Bone Marrow Cell Transfer After Myocardial Infarction. Circulation, 2006, 113, 1287-1294.	1.6	936
115	The Transforming Growth Factor-Î ² Superfamily Member Growth-Differentiation Factor-15 Protects the Heart From Ischemia/Reperfusion Injury. Circulation Research, 2006, 98, 351-360.	2.0	551
116	cGMP-dependent Protein Kinase Type I Inhibits TAB1-p38 Mitogen-activated Protein Kinase Apoptosis Signaling in Cardiac Myocytes. Journal of Biological Chemistry, 2006, 281, 32831-32840.	1.6	79
117	Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1655-1660.	3.3	143
118	Monitoring of Bone Marrow Cell Homing Into the Infarcted Human Myocardium. Circulation, 2005, 111, 2198-2202.	1.6	888
119	Mesenchymal Stem Cells for Myocardial Infarction. Circulation, 2005, 112, 151-153.	1.6	64
120	Clinical Applications of Stem Cells for the Heart. Circulation Research, 2005, 96, 151-163.	2.0	392
121	Targeting calcineurin and associated pathways in cardiac hypertrophy and failure. Expert Opinion on Therapeutic Targets, 2005, 9, 963-973.	1.5	24
122	Interference of antihypertrophic molecules and signaling pathways with the Ca2+?calcineurin?NFAT cascade in cardiac myocytes. Cardiovascular Research, 2004, 63, 450-457.	1.8	97
123	Heme oxygenase-1 inhibition of MAP kinases, calcineurin/NFAT signaling, and hypertrophy in cardiac myocytes. Cardiovascular Research, 2004, 63, 545-552.	1.8	55
124	Nitric oxide and the enigma of cardiac hypertrophy. BioEssays, 2004, 26, 608-615.	1.2	46
125	Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, The, 2004, 364, 141-148.	6.3	2,065
126	Regulation of Cardiac Remodeling by Nitric Oxide: Focus on Cardiac Myocyte Hypertrophy and Apoptosis. , 2004, , 71-79.		2

#	Article	IF	CITATIONS
127	Monitoring of Bone Marrow Cell Homing in the Infarcted Human Myocardium by PET Blood, 2004, 104, 2696-2696.	0.6	2
128	Increased effects of C-type natriuretic peptide on contractility and calcium regulation in murine hearts overexpressing cyclic GMP-dependent protein kinase I. British Journal of Pharmacology, 2003, 140, 1227-1236.	2.7	51
129	Alterations in Janus Kinase (JAK)-Signal Transducers and Activators of Transcription (STAT) Signaling in Patients With End-Stage Dilated Cardiomyopathy. Circulation, 2003, 107, 798-802.	1.6	135
130	Downregulation of Cytoskeletal Muscle LIM Protein by Nitric Oxide. Circulation, 2003, 107, 1424-1432.	1.6	69
131	Single L-type Ca2+ channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovascular Research, 2003, 60, 268-277.	1.8	86
132	Nitric oxide as a negative regulator of cardiac myocyte hypertrophy - Signaling pathways and novel downstream targets BMC News and Views, 2003, 3, .	0.0	0
133	Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11363-11368.	3.3	254
134	Gene Transfer of cGMP-Dependent Protein Kinase I Enhances the Antihypertrophic Effects of Nitric Oxide in Cardiomyocytes. Hypertension, 2002, 39, 87-92.	1.3	128
135	Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis. Heart Failure Reviews, 2002, 7, 317-325.	1.7	81
136	The role of interleukin-6 in the failing heart. , 2001, 6, 95-103.		161
137	The Cardiac Fas (APO-1/CD95) Receptor/Fas Ligand System. Circulation, 2000, 101, 1172-1178.	1.6	104
138	The renin–angiotensin system and experimental heart failure. Cardiovascular Research, 1999, 43, 838-849.	1.8	186
139	Cardiotrophin-1 and the role of gp130-dependent signaling pathways in cardiac growth and development. Journal of Molecular Medicine, 1997, 75, 492-501.	1.7	89
140	Cardiotrophin-1 Activates a Distinct Form of Cardiac Muscle Cell Hypertrophy. Journal of Biological Chemistry, 1996, 271, 9535-9545.	1.6	344