Liyuan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736800/publications.pdf

Version: 2024-02-01

51	1,209	15	34
papers	citations	h-index	g-index
51	51	51	1949
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Phase-selective synthesis of $1T\hat{a}\in^2$ MoS2 monolayers and heterophase bilayers. Nature Materials, 2018, 17, 1108-1114.	27.5	348
2	Graphene-like carbon-nitrogen materials as anode materials for Li-ion and mg-ion batteries. Applied Surface Science, 2019, 487, 1026-1032.	6.1	85
3	Stanene nanomeshes as anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 7933-7941.	10.3	72
4	First-principles characterization of two-dimensional (CH ₃ (CH ₃ (CH ₃) _{>1} (CH ₃ NH ₃) ₂ (CH ₃ NH ₃) ₂ (CH ₃ NH ₃) ₂ (CH ₃ NH ₃) ₄) ₄) ₄) ₄ 3) ₄) <su< td=""><td>∙3⊲/ouab>)∢</td><td>ksubb⊗nâ^'1</td></su<>	∙3⊲/ o uab>)∢	ksubb⊗nâ^'1
5	Thermoelectric properties of SnSe compound. Journal of Alloys and Compounds, 2015, 643, 116-120.	5.5	55
6	Structural Properties and Phase Transition of Na Adsorption on Monolayer MoS2. Nanoscale Research Letters, 2016, 11, 330.	5.7	45
7	Structural and electronic properties of two-dimensional stanene and graphene heterostructure. Nanoscale Research Letters, 2016, 11, 525.	5.7	43
8	An investigation of Li-decorated N-doped penta-graphene for hydrogen storage. International Journal of Hydrogen Energy, 2021, 46, 25533-25542.	7.1	42
9	Quasiparticle and optical properties of strained stanene and stanane. Scientific Reports, 2017, 7, 3912.	3.3	40
10	Strain Effect on Thermoelectric Performance of InSe Monolayer. Nanoscale Research Letters, 2019, 14, 287.	5.7	40
11	Electronic and excitonic properties of two-dimensional and bulk InN crystals. RSC Advances, 2017, 7, 42455-42461.	3.6	34
12	Electronic and Interface Properties in Graphene Oxide/Hydrogenâ€Passivated Ge Heterostructure. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800461.	2.4	31
13	Hydrogen evolution reaction on in-plane platinum and palladium dichalcogenides via single-atom doping. International Journal of Hydrogen Energy, 2021, 46, 18294-18304.	7.1	23
14	Two dimension transition metal boride Y2B2 as a promising anode in Li-ion and Na-ion batteries. Computational Materials Science, 2021, 200, 110776.	3.0	22
15	Tension-induced mechanical properties of stanene. Modern Physics Letters B, 2016, 30, 1650146.	1.9	19
16	Raman scattering studies of dilute InP _{1â°'<i>x</i>} Bi _{<i>x</i>} alloys reveal unusually strong oscillator strength for Bi-induced modes. Semiconductor Science and Technology, 2015, 30, 094003.	2.0	15
17	Fluorine passivation of ODC defects in amorphous germanium dioxide. Journal of Non-Crystalline Solids, 2020, 550, 120388.	3.1	15
18	First-principles study of two-dimensional zirconium nitrogen compounds: Anode materials for Na-ion batteries. Materials Chemistry and Physics, 2020, 250, 123028.	4.0	13

#	Article	IF	CITATIONS
19	Structural and electronic properties of peroxy linkage defect and its interconversion in fused silica. Journal of Non-Crystalline Solids, 2016, 434, 96-101.	3.1	12
20	Electronic and Optical Properties of Arsenene Under Uniaxial Strain. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 214-218.	2.9	12
21	Electronic structure and optical properties of boron-sulfur symmetric codoping in 4 $\tilde{A}-4$ graphene systems. European Physical Journal B, 2015, 88, 1.	1.5	11
22	High n-type and p-type thermoelectric performance of two-dimensional SiTe at high temperature. RSC Advances, 2018, 8, 21280-21287.	3.6	11
23	Quasiparticle energies and significant exciton effects of monolayered blue arsenic phosphorus conformers. Physical Chemistry Chemical Physics, 2021, 23, 23808-23817.	2.8	11
24	Structural and Optical Properties of Point Defects in \hat{l}_{\pm} -SiO ₂ Cluster*. Communications in Theoretical Physics, 2015, 64, 244-248.	2.5	10
25	The effect of Biln hetero-antisite defects in In1–PBi alloy. Journal of Alloys and Compounds, 2016, 674, 21-25.	5.5	10
26	Structural and electronic properties of PdS 2 nanoribbons. Journal of Magnetism and Magnetic Materials, 2018, 458, 310-316.	2.3	10
27	1D/2D Heterostructures as Ultrathin Catalysts for Hydrogen Evolution Reaction. Small, 2020, 16, e2004296.	10.0	10
28	Impact of Halogen Substitution on the Electronic and Optical Properties of 2D Lead-Free Hybrid Perovskites. Journal of Physical Chemistry C, 2021, 125, 15742-15750.	3.1	10
29	Tunable band gaps in stanene/MoS2 heterostructures. Journal of Materials Science, 2017, 52, 5799-5806.	3.7	9
30	Electrical and optical properties of Si-doped Ga ₂ O ₃ . Modern Physics Letters B, 2017, 31, 1750172.	1.9	9
31	Electronic and Topological Properties of Ultraflat Stanene Functionalized by Hydrogen and Halogen Atoms. Journal of Electronic Materials, 2021, 50, 3334-3340.	2.2	9
32	Typeâ€II van der Waals Heterostructures Based on AsP and Transition Metal Dichalcogenides: Great Promise for Applications in Solar Cell. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	9
33	Robust quasi-ohmic contact against angle rotation in noble transition-metal-dichalcogenide/graphene heterobilayers. RSC Advances, 2017, 7, 45896-45901.	3.6	8
34	Promising two-dimensional T-silicene as high capacity anode for rechargeable lithium-ion and sodium-ion batteries. Chemical Physics Letters, 2021, 784, 139097.	2.6	8
35	First-principles study on optoelectronic properties of Cs ₂ PbX ₄ –PtSe ₂ van der Waals heterostructures. RSC Advances, 2022, 12, 2292-2299.	3.6	8
36	First-principles study on electronic properties of stanene/WS ₂ monolayer. Modern Physics Letters B, 2017, 31, 1750271.	1.9	7

#	Article	IF	CITATIONS
37	Mechanical, electronic and optical properties of bulk and monolayer GeSe ₂ . International Journal of Modern Physics B, 2020, 34, 2050034.	2.0	6
38	Investigation of native defects and impurities in X-N (XÂ=ÂAI, Ga, In). Computational Materials Science, 2021, 188, 110169.	3.0	4
39	Anisotropic to Isotropic Transition in Monolayer Group-IV Tellurides. Materials, 2021, 14, 4495.	2.9	4
40	Novel high-performance anodic materials for lithium ion batteries: two-dimensional Sn–X (X = C, Si,) Tj ETQq0	0 0 rgBT /0 2.8	Overlock 10
41	Broken electron transfer pathway in enzyme: Gold clusters inhibiting TrxR1/Trx via cell studies and theory simulations. Chinese Chemical Letters, 2022, 33, 3488-3491.	9.0	4
42	Crown oxygen-doping graphene with embedded main-group metal atoms. European Physical Journal B, 2018, 91, 1.	1.5	3
43	Strong interlayer interaction in two-dimensional layered PtTe2. Journal of Solid State Chemistry, 2022, 305, 122657.	2.9	3
44	Strain-induced energetic and electronic properties of stanene nanomeshes. Journal of Computational Electronics, 2020, 19, 1357-1364.	2.5	2
45	First principles study on planar mechanism and heterostructures of ultraflat stanene. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114908.	2.7	2
46	Structural and Optical Properties of $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Quartz Cluster with Oxygen-Deficiency Centers. Advances in Condensed Matter Physics, 2018, 2018, 1-9.	1.1	1
47	Dark Current Characteristic of p-i-n and nBn MWIR InAs/GaSb Superlattice Infrared Detectors. , 2019, , .		1
48	First-principles study on composition-dependent properties of quaternary InP1â^'xâ^'yNxBiy alloys. Modern Physics Letters B, 2020, 34, 2050111.	1.9	1
49	Electronic Properties of Dilute Bismides. Springer Series in Materials Science, 2019, , 1-9.	0.6	0
50	Valence Band Anticrossing in InP1-xBix. , 2015, , .		0
51	First-Principles Study of Alkali Metal Atoms Adsorption on Pristine and $\langle i \rangle p \langle j \rangle$ -Type Graphene. Journal of Computational and Theoretical Nanoscience, 2016, 13, 5187-5193.	0.4	0