Edward D Högestätt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1â€mediated hypothermia and is associated with prostaglandin inhibition in the brain. FASEB Journal, 2018, 32, 5751-5759.	0.5	29
2	<i>N,N</i> 'â€Bis(2â€mercaptoethyl)isophthalamide Binds Electrophilic Paracetamol Metabolites and Prevents Paracetamolâ€Induced Liver Toxicity. Basic and Clinical Pharmacology and Toxicology, 2018, 123, 589-593.	2.5	4
3	The N-terminal Ankyrin Repeat Domain Is Not Required for Electrophile and Heat Activation of the Purified Mosquito TRPA1 Receptor. Journal of Biological Chemistry, 2016, 291, 26899-26912.	3.4	16
4	Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity. Scientific Reports, 2016, 6, 28763.	3.3	103
5	TRPA1. Handbook of Experimental Pharmacology, 2014, 222, 583-630.	1.8	184
6	Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16901-16906.	7.1	130
7	H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO–TRPA1–CGRP signalling pathway. Nature Communications, 2014, 5, 4381.	12.8	324
8	Pungent products from garlic activate the sensory ion channel TRPA1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12248-12252.	7.1	740
9	Conversion of Acetaminophen to the Bioactive N-Acylphenolamine AM404 via Fatty Acid Amide Hydrolase-dependent Arachidonic Acid Conjugation in the Nervous System. Journal of Biological Chemistry, 2005, 280, 31405-31412.	3.4	347
10	Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature, 2004, 427, 260-265.	27.8	1,706
11	Cardiovascular pharmacology of anandamide. Prostaglandins Leukotrienes and Essential Fatty Acids, 2002, 66, 343-351.	2.2	46
12	Effects of inhibitors of small- and intermediate-conductance calcium-activated potassium channels, inwardly-rectifying potassium channels and Na+ /K+ ATPase on EDHF relaxations in the rat hepatic artery. British Journal of Pharmacology, 2000, 129, 1490-1496.	5.4	51
13	Involvement of sensory nerves in vasodilator responses to acetylcholine and potassium ions in rat hepatic artery. British Journal of Pharmacology, 2000, 130, 27-32.	5.4	11
14	Vasodilator effects of KRN2391, levcromakalim and 3-morpholino-sydnonimin in human pial and omental arteries. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 68-73.	3.0	6
15	Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 1999, 400, 452-457.	27.8	2,022
16	Vasodilator Action of the Nitroxylated Cyanoamidine Derivative, KRN2391, in Rabbit Basilar Artery. Basic and Clinical Pharmacology and Toxicology, 1999, 85, 80-84.	0.0	0
17	Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. British Journal of Pharmacology, 1998, 124, 992-1000.	5.4	49
18	Modulation by the Endothelium of the Inhibitory Effects of Pinacidil and Nimodipine on Endothelinâ€Induced Contraction in Cerebral Arteries. Basic and Clinical Pharmacology and Toxicology, 1997, 80, 30-37.	0.0	4

Edward D Högestät

#	Article	IF	CITATIONS
19	Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries. British Journal of Pharmacology, 1997, 120, 1344-1350.	5.4	118
20	Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery. British Journal of Pharmacology, 1997, 121, 141-149.	5.4	78
21	Studies on the effects of anandamide in rat hepatic artery. British Journal of Pharmacology, 1997, 122, 1679-1686.	5.4	77
22	Role of potassium channels in endotheliumâ€dependent relaxation resistant to nitroarginine in the rat hepatic artery. British Journal of Pharmacology, 1996, 117, 1600-1606.	5.4	193
23	Effects of cytochrome P450 inhibitors on EDHFâ€mediated relaxation in the rat hepatic artery. British Journal of Pharmacology, 1996, 118, 1147-1152.	5.4	79
24	Effects of cytochrome P450 inhibitors on potassium currents and mechanical activity in rat portal vein. British Journal of Pharmacology, 1996, 119, 691-701.	5.4	59
25	Effects of potassium channel inhibitors on nitrergic and adrenergic neurotransmission in lamina propria of the female rabbit urethra. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 336-42.	3.0	11
26	Substance Pâ€induced relaxation and hyperpolarization in human cerebral arteries. British Journal of Pharmacology, 1995, 115, 889-894.	5.4	56
27	Characterization of vascular neuropeptide Y receptors. British Journal of Pharmacology, 1992, 105, 45-50.	5.4	115
28	Calcium Antagonistic Properties of the Sesquiterpene T adinol: A Comparison with Nimodipine in the Isolated Rat Aorta. Basic and Clinical Pharmacology and Toxicology, 1991, 69, 173-177.	0.0	18
29	Influence of Temperature and Extracellular pH on Contractile Responses in Isolated Human Hand Veins. Basic and Clinical Pharmacology and Toxicology, 1990, 67, 141-146.	0.0	3
30	Vascular effects of helodermin, helospectin I and helospectin II: a comparison with vasoactive intestinal peptide (VIP). British Journal of Pharmacology, 1990, 99, 526-528.	5.4	37
31	Differential effects of calcium antagonists and Bay K 8644 on contractile responses to exogenous noradrenaline and adrenergic nerve stimulation in the rabbit ear artery. British Journal of Pharmacology, 1990, 101, 961-967.	5.4	5