Ximing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736611/publications.pdf

Version: 2024-02-01

38 papers	957 citations	430874 18 h-index	454955 30 g-index
38 all docs	38 docs citations	38 times ranked	1138 citing authors

#	Article	IF	CITATIONS
1	Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media. Green Chemistry, 2016, 18, 5219-5229.	9.0	110
2	Hydrothermal carbonization of cellulose and xylan into hydrochars and application on glucose isomerization. Journal of Cleaner Production, 2019, 237, 117831.	9.3	83
3	Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose. Energy & Fuels, 2015, 29, 2387-2393.	5.1	74
4	Green Synthesis of Nitrogen-doped Porous Carbon Derived from Rice Straw for High-performance Supercapacitor Application. Energy & Supercapacitor Application.	5.1	71
5	Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization. Chemosphere, 2021, 263, 128093.	8.2	62
6	Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. Journal of Physical Chemistry A, 2017, 121, 623-630.	2.5	57
7	Cellulose modification by recyclable swelling solvents. Biotechnology for Biofuels, 2018, 11, 191.	6.2	44
8	Overcoming cellulose recalcitrance in woody biomass for the lignin-first biorefinery. Biotechnology for Biofuels, 2019, 12, 171.	6.2	37
9	Effect of Swelling Pretreatment on Properties of Cellulose-Based Hydrochar. ACS Sustainable Chemistry and Engineering, 2019, 7, 10821-10829.	6.7	32
10	Corn stover valorization by one-step formic acid fractionation and formylation for 5-hydroxymethylfurfural and high guaiacyl lignin production. Bioresource Technology, 2020, 299, 122586.	9.6	32
11	Selective 5-hydroxymethylfurfural production from cellulose formate in DMSO-H2O media. Applied Catalysis B: Environmental, 2021, 285, 119799.	20.2	30
12	Synthesis of Fe/N Co-doped Porous Carbon Spheres Derived from Corncob for Supercapacitors with High Performances. Energy & Energy	5.1	27
13	Production of cellulose nanofibers using phenolic enhanced surface oxidation. Carbohydrate Polymers, 2017, 174, 120-127.	10.2	26
14	Green Synthesis of Fe-Decorated Carbon Sphere/Nanosheet Derived from Bamboo for High-Performance Supercapacitor Application. Energy & Energy & 2021, 35, 827-838.	5.1	25
15	Enhanced rates of enzymatic saccharification and catalytic synthesis of biofuel substrates in gelatinized cellulose generated by trifluoroacetic acid. Biotechnology for Biofuels, 2017, 10, 310.	6.2	23
16	Green synthesis of aluminum-hydrochar for the selective isomerization of glucose to fructose. Science of the Total Environment, 2020, 727, 138743.	8.0	23
17	Enhanced Acid-Catalyzed Biomass Conversion to Hydroxymethylfurfural Following Cellulose Solvent- and Organic Solvent-Based Lignocellulosic Fractionation Pretreatment. Energy & Samp; Fuels, 2016, 30, 9975-9977.	5.1	22
18	Enzymatic Epoxidation of High Oleic Soybean Oil. ACS Sustainable Chemistry and Engineering, 2018, 6, 8578-8583.	6.7	18

#	Article	IF	Citations
19	Glucose isomerization catalyzed by swollen cellulose derived aluminum-hydrochar. Science of the Total Environment, 2021, 777, 146037.	8.0	16
20	Impacts of molybdate and ferric chloride on biohythane production through two-stage anaerobic digestion of sulfate-rich hydrolyzed tofu processing residue. Bioresource Technology, 2022, 355, 127239.	9.6	15
21	Effects of hydrothermal pretreatment and bamboo hydrochar addition on anaerobic digestion of tofu residue for biogas production. Bioresource Technology, 2021, 336, 125279.	9.6	14
22	Gamagrass varieties as potential feedstock for fermentable sugar production. Bioresource Technology, 2012, 116, 540-544.	9.6	13
23	Rapid Liquefaction of Corn Stover with Microwave Heating. BioResources, 2015, 10, .	1.0	13
24	Combination of ultrasonic and acidic pretreatments for enhancing biohythane production from tofu processing residue via one-stage anaerobic digestion. Bioresource Technology, 2022, 344, 126244.	9.6	12
25	Endogenous calcium enriched hydrochar catalyst derived from water hyacinth for glucose isomerization. Science of the Total Environment, 2022, 807, 150660.	8.0	11
26	Fenton Reaction-Modified Corn Stover To Produce Value-Added Chemicals by Ultralow Enzyme Hydrolysis and Maleic Acid and Aluminum Chloride Catalytic Conversion. Energy & Energy & 2019, 33, 6429-6435.	5.1	9
27	Concentrated HCl Catalyzed 5-(Chloromethyl)furfural Production from Corn Stover of Varying Particle Sizes. Bioenergy Research, 2017, 10, 1018-1024.	3.9	8
28	Engineering functional hydrochar based catalyst with corn stover and model components for efficient glucose isomerization. Energy, 2022, 249, 123668.	8.8	8
29	Catalytic valorization of lignocellulosics: from bulk biofuels to valueâ€added chemicals. Biofuels, Bioproducts and Biorefining, 2021, 15, 592-608.	3.7	7
30	Insights into the glucose isomerization mechanism of Al-hydrochar catalyst probed by Al-oxide species transformation. Journal of Environmental Chemical Engineering, 2021, 9, 106721.	6.7	7
31	Conversion of glucose to 5-hydroxymethyl furfural in water-acetonitrile-dimethyl sulfoxide solvent with aluminum on activated carbon and maleic acid. Industrial Crops and Products, 2021, 174, 114220.	5.2	7
32	Facile one-pot synthesis of functional hydrochar catalyst for biomass valorization. Fuel, 2022, 315, 123172.	6.4	7
33	Selective Aerobic Oxidation of C _{sp³} –H Bonds Catalyzed by Yeast-Derived Nitrogen, Phosphorus, and Oxygen Codoped Carbon Materials. Journal of Organic Chemistry, 2022, 87, 3978-3988.	3.2	6
34	Bifunctional Fe3O4 nanoparticles as magnet and inducer in bioextruded fabrication of starch-based composite with hierarchical pore architecture. International Journal of Biological Macromolecules, 2021, 190, 876-886.	7.5	3
35	Mechanistic investigation of cellulose formate to 5-hydroxymethylfurfural conversion in DMSO-H2O. Journal of Molecular Liquids, 2022, 348, 118471.	4.9	3
36	Investigation of cascade valorization of Pistia stratiotes L. by hydrothermal treatment. Fuel, 2022, 324, 124473.	6.4	1

3

XIMING ZHANG

#	Article	IF	CITATIONS
37	Biohythane production from tofu processing residue via two-stage anaerobic digestion: operational conditions and microbial community dynamics. Biomass Conversion and Biorefinery, 2024, 14, 5469-5488.	4.6	1
38	Bioenergy and Biomass Utilization. BioMed Research International, 2015, 2015, 1-2.	1.9	0