Motoaki Iwaya

List of Publications by Citations

Source: https://exaly.com/author-pdf/4736517/motoaki-iwaya-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

148
papers2,887
citations28
h-index48
g-index155
ext. papers3,285
ext. citations2.2
avg, IF4.62
L-index

#	Paper	IF	Citations
148	Improved Efficiency of 255\(\mathbb{\textit{2}}\)80 nm AlGaN-Based Light-Emitting Diodes. <i>Applied Physics Express</i> , 2010 , 3, 061004	2.4	204
147	Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, L316-L318	1.4	170
146	Stress and Defect Control in GaN Using Low Temperature Interlayers. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, L1540-L1542	1.4	132
145	350.9 nm UV Laser Diode Grown on Low-Dislocation-Density AlGaN. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, L499-L500	1.4	125
144	Solar-Blind UV Photodetectors Based on GaN/AlGaN p-i-n Photodiodes. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, L387-L389	1.4	97
143	Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. <i>Journal of Crystal Growth</i> , 2007 , 298, 257-260	1.6	89
142	Dislocations in AlN Epilayers Grown on Sapphire Substrate by High-Temperature Metal-Organic Vapor Phase Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 1458-1462	1.4	80
141	High-Temperature Metal-Organic Vapor Phase Epitaxial Growth of AlN on Sapphire by Multi Transition Growth Mode Method Varying V/III Ratio. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 8639	-8643	79
140	Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure. Journal of Crystal Growth, 2001 , 223, 83-91	1.6	75
139	Impact of high-temperature growth by metal-organic vapor phase epitaxy on microstructure of AlN on 6H-SiC substrates. <i>Journal of Crystal Growth</i> , 2008 , 310, 2308-2313	1.6	64
138	Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AllnN/GaN distributed Bragg reflectors. <i>Applied Physics Express</i> , 2016 , 9, 102101	2.4	57
137	Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio. <i>Journal of Crystal Growth</i> , 2007 , 300, 136-140	1.6	56
136	Novel UV devices on high-quality AlGaN using grooved underlying layer. <i>Journal of Crystal Growth</i> , 2009 , 311, 2860-2863	1.6	52
135	High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN. <i>Journal of Crystal Growth</i> , 2008 , 310, 2326-2329	1.6	50
134	Realization of crack-free and high-quality thick AlxGa1\(\text{NN} \) for UV optoelectronics using low-temperature interlayer. <i>Applied Surface Science</i> , 2000 , 159-160, 405-413	6.7	50
133	Realization of Nitride-Based Solar Cell on Freestanding GaN Substrate. <i>Applied Physics Express</i> , 2010 , 3, 111001	2.4	48
132	Improvement of Light Extraction Efficiency for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 122101	1.4	44

(2003-2013)

131	GaInN-Based Tunnel Junctions in 响面 Light Emitting Diodes. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 08JH06	1.4	41	
130	Low-Intensity Ultraviolet Photodetectors Based on AlGaN. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, L487-L489	1.4	41	
129	Influence of High Temperature in the Growth of Low Dislocation Content AlN Bridge Layers on Patterned 6H-SiC Substrates by Metalorganic Vapor Phase Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, L307-L310	1.4	39	
128	Flat (11bar20) GaN Thin Film on Precisely Offset-Controlled (1bar102) Sapphire Substrate. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 7418-7420	1.4	37	
127	High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 7414-7417	1.4	36	
126	Control of p-Type Conduction in a-Plane GaN Grown on Sapphire r-Plane Substrate. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, L1516-L1518	1.4	34	
125	High-performance UV emitter grown on high-crystalline-quality AlGaN underlying layer. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2009 , 206, 1199-1204	1.6	33	
124	Control of crystallinity of GaN grown on sapphire substrate by metalorganic vapor phase epitaxy using in situ X-ray diffraction monitoring method. <i>Journal of Crystal Growth</i> , 2014 , 401, 367-371	1.6	30	
123	One-sidewall-seeded epitaxial lateral overgrowth of a-plane GaN by metalorganic vapor-phase epitaxy. <i>Journal of Crystal Growth</i> , 2009 , 311, 2887-2890	1.6	29	
122	Microscopic Investigation of Al0.43Ga0.57N on Sapphire. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, L1515-L1518	1.4	29	
121	High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. <i>Applied Physics Letters</i> , 2017 , 111, 191103	3.4	28	
120	Low-Leakage-Current Enhancement-Mode AlGaN/GaN Heterostructure Field-Effect Transistor Using p-Type Gate Contact. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, L319-L321	1.4	28	
119	Fracture of AlxGa1-xN/GaN Heterostructure Compositional and Impurity Dependence <i>Japanese Journal of Applied Physics</i> , 2001 , 40, L195-L197	1.4	28	
118	Growth of High-Quality AlN and AlGaN Films on Sputtered AlN/Sapphire Templates via High-Temperature Annealing. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1700506	1.3	26	
117	Development of AlN/diamond heterojunction field effect transistors. <i>Diamond and Related Materials</i> , 2012 , 24, 206-209	3.5	26	
116	Control of Threshold Voltage of Enhancement-Mode AlxGa1-xN/GaN Junction Heterostructure Field-Effect Transistors Using p-GaN Gate Contact. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 115-11	ı∮·4	26	
115	Laser diode of 350.9nm wavelength grown on sapphire substrate by MOVPE. <i>Journal of Crystal Growth</i> , 2004 , 272, 270-273	1.6	26	
114	High-Power UV-Light-Emitting Diode on Sapphire. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 400-40	31.4	25	

113	Compensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy. <i>Journal of Crystal Growth</i> , 2010 , 312, 3131-3135	1.6	24
112	Thermodynamic Aspects of Growth of AlGaN by High-Temperature Metal Organic Vapor Phase Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 2502-2504	1.4	24
111	GaInN-based tunnel junctions with graded layers. <i>Applied Physics Express</i> , 2016 , 9, 081005	2.4	24
110	GalnN-based tunnel junctions with high InN mole fractions grown by MOVPE. <i>Physica Status Solidi</i> (B): Basic Research, 2015 , 252, 1127-1131	1.3	23
109	High-quality AlN film grown on a nanosized concavedonvex surface sapphire substrate by metalorganic vapor phase epitaxy. <i>Applied Physics Letters</i> , 2017 , 111, 162102	3.4	22
108	White light-emitting diode based on fluorescent SiC. <i>Thin Solid Films</i> , 2012 , 522, 23-25	2.2	21
107	Ultraviolet-B band lasers fabricated on highly relaxed thick Al0.55Ga0.45N films grown on various types of AlN wafers. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SC1052	1.4	20
106	Light confinement and high current density in UVB laser diode structure using Al composition-graded p-AlGaN cladding layer. <i>Applied Physics Letters</i> , 2019 , 114, 191103	3.4	20
105	Extremely Low-Resistivity and High-Carrier-Concentration Si-Doped Al0.05Ga0.95N. <i>Applied Physics Express</i> , 2013 , 6, 121002	2.4	20
104	Anisotropically Biaxial Strain ina-Plane AlGaN on GaN Grown onr-Plane Sapphire. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 2509-2513	1.4	19
103	High On/Off Ratio in Enhancement-Mode AlxGa1-xN/GaN Junction Heterostructure Field-Effect Transistors with P-Type GaN Gate Contact. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, L1048-L1050	1.4	19
102	Strain Relaxation Mechanisms in AlGaN Epitaxy on AlN Templates. <i>Applied Physics Express</i> , 2010 , 3, 1110	0034	18
101	Epitaxial lateral overgrowth of AlxGa1N (x>0.2) on sapphire and its application to UV-B-light-emitting devices. <i>Journal of Crystal Growth</i> , 2007 , 298, 265-267	1.6	18
100	Analysis of strain relaxation process in GaInN/GaN heterostructure by in situ X-ray diffraction monitoring during metalorganic vapor-phase epitaxial growth. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 211-214	2.5	17
99	Determination of internal quantum efficiency in GaInN-based light-emitting diode under electrical injection: carrier recombination dynamics analysis. <i>Applied Physics Express</i> , 2019 , 12, 032006	2.4	16
98	Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, L498-L501	1.4	16
97	Effect of AlGaN undershell on the cathodoluminescence properties of coaxial GaInN/GaN multiple-quantum-shells nanowires. <i>Nanoscale</i> , 2019 , 11, 18746-18757	7.7	16
96	The dependence of AlN molar fraction of AlGaN in wet etching by using tetramethylammonium hydroxide aqueous solution. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SCCC30	1.4	14

(2004-2008)

95	Realization of low-dislocation-density, smooth surface, and thick GaInN films on m-plane GaN templates. <i>Journal of Crystal Growth</i> , 2008 , 310, 3308-3312	1.6	14	
94	Injection efficiency in AlGaN-based UV laser diodes. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 2384-2386		13	
93	Relationship between misfit-dislocation formation and initial threading-dislocation density in GaInN/GaN heterostructures. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 115501	1.4	12	
92	Realization of High-Crystalline-Quality Thick m-Plane GaInN Film on 6H-SiC Substrate by Epitaxial Lateral Overgrowth. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, L948-L950	1.4	12	
91	Growth and Characterization of Core-Shell Structures Consisting of GaN Nanowire Core and GaInN/GaN Multi-Quantum Shell. <i>ECS Journal of Solid State Science and Technology</i> , 2020 , 9, 015007	2	12	
90	450 nm GaInN ridge stripe laser diodes with AlInN/AlGaN multiple cladding layers. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SCCC28	1.4	11	
89	Relaxation and recovery processes of AlxGa1NN grown on AlN underlying layer. <i>Journal of Crystal Growth</i> , 2009 , 311, 2850-2852	1.6	11	
88	Fabrication of Nonpolar \$a\$-Plane Nitride-Based Solar Cell on \$r\$-Plane Sapphire Substrate. <i>Applied Physics Express</i> , 2011 , 4, 101001	2.4	11	
87	High hole concentration in Mg-doped a-plane Ga1IInxN (0. <i>Applied Physics Letters</i> , 2008 , 93, 182108	3.4	11	
86	Improved Uniform Current Injection into Core-Shell-Type GaInN Nanowire Light-Emitting Diodes by Optimizing Growth Condition and Indium-Tin-Oxide Deposition. <i>Physica Status Solidi (A)</i> Applications and Materials Science, 2020 , 217, 1900715	1.6	11	
85	AlGaN-based UV-B laser diode with a high optical confinement factor. <i>Applied Physics Letters</i> , 2021 , 118, 163504	3.4	11	
84	Characterization and optimization of sputtered AlN buffer layer on r-plane sapphire substrate to improve the crystalline quality of nonpolar a-plane GaN. <i>Journal of Crystal Growth</i> , 2017 , 480, 90-95	1.6	10	
83	High Crystallinity and Highly Relaxed Al0.60Ga0.40N Films Using Growth Mode Control Fabricated on a Sputtered AlN Template with High-Temperature Annealing. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 1900868	1.6	10	
82	Controlled synthesis of nonpolar GaInN/GaN multiple-quantum-shells on GaN nanowires by metal-organic chemical vapour deposition. <i>Applied Surface Science</i> , 2020 , 509, 145271	6.7	10	
81	Characterization of nonpolar a -plane GaN epi-layers grown on high-density patterned r -plane sapphire substrates. <i>Journal of Crystal Growth</i> , 2018 , 484, 50-55	1.6	10	
80	Reduction in threshold current density of 355 nm UV laser diodes. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 1564-1568		10	
79	X-ray diffraction reciprocal lattice space mapping of a-plane AlGaN on GaN. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 1524-1528	1.3	10	
78	High-quality Al0.12Ga0.88N film with low dislocation density grown on facet-controlled Al0.12Ga0.88N by MOVPE. <i>Journal of Crystal Growth</i> , 2004 , 272, 377-380	1.6	10	

77	Enhanced Device Performance of GaInN-Based Green Light-Emitting Diode with Sputtered AlN Buffer Layer. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 788	2.6	10
76	GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SCCC	:0 ¹ 1 ⁴	9
75	Hybrid simulation of light extraction efficiency in multi-quantum-shell (MQS) NW (nanowire) LED with a current diffusion layer. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SCCC17	1.4	9
74	Properties of nitride-based photovoltaic cells under concentrated light illumination. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 145-147	2.5	9
73	Relaxation of misfit-induced stress in nitride-based heterostructures. <i>Journal of Crystal Growth</i> , 2002 , 237-239, 947-950	1.6	9
72	. IEEE Journal of Quantum Electronics, 2019 , 55, 1-11	2	8
71	Sapphire substrate off-angle and off-direction dependences on characteristics of AlGaN-based deep ultraviolet light-emitting diodes. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SC1025	1.4	8
70	Realization of extreme light extraction efficiency for moth-eye LEDs on SiC substrate using high-reflection electrode. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, 2180-2187	2	8
69	Control of stress and crystalline quality in GaInN films used for green emitters. <i>Journal of Crystal Growth</i> , 2008 , 310, 4920-4922	1.6	8
68	In-plane GaN/AlGaN heterostructure fabricated by selective mass transport planar technology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 139-142	3.1	8
67	Development of Monolithically Grown Coaxial GaInN/GaN Multiple Quantum Shell Nanowires by MOCVD. <i>Nanomaterials</i> , 2020 , 10,	5.4	8
66	Effects of Mg and Si doping in the guide layers of AlGaN-based ultraviolet-B band lasers. <i>Journal of Crystal Growth</i> , 2020 , 535, 125537	1.6	7
65	In situ X-ray diffraction monitoring of GaInN/GaN superlattice during organometalic vapor phase epitaxy growth. <i>Journal of Crystal Growth</i> , 2014 , 393, 108-113	1.6	7
64	Annealing of the sputtered AlN buffer layer on r-plane sapphire and its effect on a-plane GaN crystalline quality. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1600723	1.3	7
63	Structural and optical impacts of AlGaN undershells on coaxial GaInN/GaN multiple-quantum-shells nanowires. <i>Nanophotonics</i> , 2019 , 9, 101-111	6.3	7
62	n-type GaN surface etched green light-emitting diode to reduce non-radiative recombination centers. <i>Applied Physics Letters</i> , 2021 , 118, 021102	3.4	7
61	High quality Al0.99Ga0.01N layers on sapphire substrates grown at 1150 °C by metalorganic vapor phase epitaxy. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 015504	1.4	6
60	In situ X-ray diffraction monitoring during metalorganic vapor phase epitaxy growth of low-temperature-GaN buffer layer. <i>Journal of Crystal Growth</i> , 2012 , 361, 1-4	1.6	6

(2020-2013)

59	Dislocation density dependence of stimulated emission characteristics in AlGaN/Al multiquantum wells. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2013 , 10, 1537-1540		6	
58	Color-tunable emission in coaxial GaInN/GaN multiple quantum shells grown on three-dimensional nanostructures. <i>Applied Surface Science</i> , 2021 , 539, 148279	6.7	6	
57	Tuning the Resonant Frequency of a Surface Plasmon by Double-Metallic Ag/Au Nanoparticles for High-Efficiency Green Light-Emitting Diodes. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 305	2.6	5	
56	Characterizations of GaN nanowires and GaInN/GaN multi-quantum shells grown by MOVPE. <i>Japanese Journal of Applied Physics</i> , 2020 , 59, SGGE05	1.4	5	
55	Analysis of Spontaneous Subpeak Emission from the Guide Layers of the Ultraviolet-B Laser Diode Structure Containing Composition-Graded p-AlGaN Cladding Layers. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 1900864	1.6	5	
54	Improvement of emission efficiency with a sputtered AlN buffer layer in GaInN-based green light-emitting diodes. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SC1040	1.4	5	
53	GaInN-based solar cells using GaInN/GaInN superlattices. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 2463-2465		5	
52	Study on the Seeded Growth of AlN Bulk Crystals by Sublimation. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 7448-7453	1.4	5	
51	Impact of H2-Preannealing of the Sapphire Substrate on the Crystallinity of Low-Temperature-Deposited AlN Buffer Layer. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 3913-391	7 ^{1.4}	5	
50	Fabrication and Characterization of Multiquantum Shell Light-Emitting Diodes with Tunnel Junction. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 1900774	1.6	5	
49	Efficiency Enhancement Mechanism of an Underlying Layer in GalnN-Based Green LightEmitting Diodes. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 1900713	1.6	5	
48	Thermodynamic analysis of GaInN-based light-emitting diodes operated by quasi-resonant optical excitation. <i>Journal of Applied Physics</i> , 2020 , 128, 123103	2.5	5	
47	Correlation between Optical and Structural Characteristics in Coaxial GaInN/GaN Multiple Quantum Shell Nanowires with AlGaN Spacers. <i>ACS Applied Materials & Description of the Coaxial GainN/GaN Multiple Quantum Shell Nanowires with AlGaN Spacers. ACS Applied Materials & Description of the Coaxial GainN/GaN Multiple Quantum Shell Nanowires with AlGaN Spacers. ACS Applied Materials & Description of the Coaxial GainN/GaN Multiple Quantum Shell Nanowires with AlGaN Spacers. ACS Applied Materials & Description of the Coaxial GainN/GaN Multiple Quantum Shell Nanowires with AlGaN Spacers. ACS Applied Materials & Description of the Coaxial GainN/GaN Multiple Quantum Shell Nanowires with AlGaN Spacers. ACS Applied Materials & Description of the Coaxial GainN/GaN Multiple Quantum Shell Nanowires with AlGaN Spacers. ACS Applied Materials & Description of the Coaxial GainN/GaN Multiple Quantum Shell Nanowires with AlGaN Spacers. ACS Applied Materials & Description of the Coaxial Gain Multiple Quantum Shell Nanowires with AlGaN Spacers. ACS Applied Materials & Description of the Coaxial Gain Multiple Quantum Shell Nanowires with AlGaN Spacers and Coaxial Gain Multiple Quantum Shell Nanowires with AlGaN Spacers and Coaxial Gain Multiple Quantum Shell Nanowires with AlGaN Spacers and Coaxial Gain Multiple Quantum Shell Nanowires with AlGaN Spacers and Coaxial Gain Multiple Quantum Shell Nanowires with AlGaN Spacers and Coaxial Gain Multiple Quantum Shell Nanowires with AlGaN Spacers and Coaxial Gain Multiple Quantum Spacers and Coaxial Gain Gain Gain Gain Gain Gain Gain Gain</i>	9.5	5	
46	Low-threshold-current (~85 mA) of AlGaN-based UV-B laser diode with refractive-index waveguide structure. <i>Applied Physics Express</i> , 2021 , 14, 094009	2.4	5	
45	GaN-based vertical cavity surface emitting lasers with lateral optical confinements and conducting distributed Bragg reflectors. <i>Japanese Journal of Applied Physics</i> , 2020 , 59, SGGE08	1.4	4	
44	Homoepitaxial growth of AlN layers on freestanding AlN substrate by metalorganic vapor phase epitaxy. <i>Journal of Crystal Growth</i> , 2014 , 390, 46-50	1.6	4	
43	Performance of GaN-Based Semiconductor Laser with Spectral Broadening due to Compositional Inhomogeneity in GaInN Active Layer. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 390-392	1.4	4	
42	Room-temperature continuous-wave operations of GaN-based vertical-cavity surface-emitting lasers with buried GaInN tunnel junctions. <i>Applied Physics Express</i> , 2020 , 13, 111003	2.4	4	

41	Photoluminescence Characterization of Fluorescent Sic with High Boron and Nitrogen Concentrations. <i>Materials Science Forum</i> , 2020 , 1004, 265-271	0.4	4	
40	Analysis of carrier injection efficiency of AlGaN UV-B laser diodes based on the relationship between threshold current density and cavity length. <i>Japanese Journal of Applied Physics</i> , 2021 , 60, 074	o b2	4	
39	MOVPE growth of n-GaN cap layer on GaInN/GaN multi-quantum shell LEDs. <i>Journal of Crystal Growth</i> , 2020 , 539, 125571	1.6	4	
38	Effects of Mg dopant in Al-composition-graded Al x Ga1⊠ N (0.45™) on vertical electrical conductivity of ultrawide bandgap AlGaN p⊞ junction. <i>Applied Physics Express</i> , 2021 , 14, 096503	2.4	4	
37	Reduction of dislocation density in Al0.6Ga0.4N film grown on sapphire substrates using annealed sputtered AlN templates and its effect on UV-B laser diodes. <i>Journal of Crystal Growth</i> , 2021 , 575, 1263	2 5 6	4	
36	Electrical properties of relaxed p-GaN/p-AlGaN superlattices and their application in ultraviolet-B light-emitting devices. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SC1016	1.4	3	
35	Nitride-based hetero-field-effect-transistor-type photosensors with extremely high photosensitivity. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 215-217	2.5	3	
34	Activation energy of Mg in a -plane Ga1⊠ Inx N (0 Physica Status Solidi (B): Basic Research, 2009 , 246, 1188-1190	1.3	3	
33	Growth of thick GaInN on grooved (101[1]) GaN/(101[2]) 4H-SiC. <i>Journal of Crystal Growth</i> , 2009 , 311, 2926-2928	1.6	3	
32	Recent development of UV-B laser diodes. Japanese Journal of Applied Physics,	1.4	3	
31	Crystal Growth and Characterization of n-GaN in a Multiple Quantum Shell Nanowire-Based Light Emitter with a Tunnel Junction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 37883-37892	9.5	3	
30	Improvement of 650-nm red-emitting GaIn0.17N/GaIn0.38N multiple quantum wells on ScAlMgO4 (0001) substrate by suppressing impurity diffusion/penetration. <i>Applied Physics Letters</i> , 2022 , 120, 142	1 <i>6</i> 24	3	
29	Optimization of indium tin oxide layer thickness for surface-plasmon-enhanced green light-emitting diodes. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SCCC27	1.4	2	
28	InGaN growth with various InN mole fractions on m-plane ZnO substrate by metalorganic vapor phase epitaxy. <i>Journal of Crystal Growth</i> , 2009 , 311, 2929-2932	1.6	2	
27	AlN and AlGaN by MOVPE for UV Light Emitting Devices. <i>Materials Science Forum</i> , 2008 , 590, 175-210	0.4	2	
26	High-quality AllnN/GaN distributed Bragg reflectors grown by metalorganic vapor phase epitaxy. <i>Applied Physics Express</i> , 2020 , 13, 125504	2.4	2	
25	Room temperature pulsed operation of nitride nanowire-based multi-quantum shell laser diodes by MOVPE. <i>Applied Physics Express</i> , 2021 , 14, 074004	2.4	2	
24	Emission characteristics of GaInN/GaN multiple quantum shell nanowire-based LEDs with different p-GaN growth conditions. <i>Nanophotonics</i> , 2021 ,	6.3	2	

(2022-2022)

23	Reduction of dislocation density in lattice-relaxed Al0.68Ga0.32N film grown on periodical 1 h spacing AlN pillar concave-convex patterns and its effect on the performance of UV-B laser diodes. <i>Applied Physics Express</i> , 2022 , 15, 031004	2.4	2
22	Optical and structural characterization of GaInN/GaN multiple quantum wells grown on nonpolar a-plane GaN templates by metalorganic vapor phase epitaxy. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SC1054	1.4	1
21	Demonstration of electron beam excitation laser using a GaInN-based multiquantum well active layer. <i>Applied Physics Express</i> , 2016 , 9, 101001	2.4	1
20	Influence of trap level on an Al0.6Ga0.4N/Al0.5Ga0.5N metalEmiconductorEnetal UV photodetector. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SCCC26	1.4	1
19	High photosensitivity AlGaN/GaInN/GaN heterojunction field-effect transistor type visible photosensors. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SCCC22	1.4	1
18	Activation of Mg-Doped p-Type Al0.17Ga0.83N in Oxygen Ambient. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 101002	1.4	1
17	Defects in highly Mg-doped AlN. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 1299-1301	1.6	1
16	Control of p-type conduction in a-plane Ga1IInxN (0. <i>Journal of Crystal Growth</i> , 2008 , 310, 4996-4998	1.6	1
15	Moth-Eye Light-Emitting Diodes. Materials Research Society Symposia Proceedings, 2004, 831, 19		1
14	Morphology Control and Crystalline Quality of p-Type GaN Shells Grown on Coaxial GaInN/GaN Multiple Quantum Shell Nanowires. <i>ACS Applied Materials & Discrete Amplied Materials & Discrete Acts Applied Materials & Discrete Acts Applied Materials & Discrete Acts Applied Materials & Discrete Acts Acts Applied Materials & Discrete Acts Acts Acts Acts Acts Acts Acts Acts</i>	9.5	1
13	MOVPE growth of Si-doped GaN cap layers embedding GaN nanowires with multiple-quantum shells. <i>Journal of Crystal Growth</i> , 2022 , 578, 126423	1.6	1
12	In-situ curvature measurements of AllnN/GaN distributed Bragg reflectors during growths containing substrate temperature ramping steps. <i>Journal of Crystal Growth</i> , 2020 , 531, 125357	1.6	1
11	Voltage-Controlled Anodic Oxidation of Porous Fluorescent SiC for Effective Surface Passivation. <i>Nanomaterials</i> , 2020 , 10,	5.4	1
10	Study on N and B Doping by Closed Sublimation Growth Using Separated Ta Crucible. <i>Materials Science Forum</i> , 2019 , 963, 34-37	0.4	1
9	Improved Reverse Leakage Current in GaInN-Based LEDs With a Sputtered AlN Buffer Layer. <i>IEEE Photonics Technology Letters</i> , 2019 , 31, 1971-1974	2.2	1
8	Space-charge effect on photogenerated-current and -voltage in III-nitride optoelectronic semiconductors. <i>Photonics Research</i> , 2021 , 9, 1820	6	1
7	Influence of silane flow rate on the structural and optical properties of GaN nanowires with multiple-quantum-shells. <i>Journal of Crystal Growth</i> , 2021 , 570, 126201	1.6	О
6	Fabrication of vertical AlGaN-based deep-ultraviolet light-emitting diodes operating at high current density (~43 kA cm 2) using a laser liftoff method. <i>Applied Physics Express</i> , 2022 , 15, 041006	2.4	O

5	Applied Physics, 2019 , 58, SC1013	1.4
4	MOVPE growth of nonpolar a-plane GaN with low oxygen contamination and specular surface on a freestanding GaN substrate. <i>Journal of Crystal Growth</i> , 2012 , 351, 126-130	1.6
3	Details of the improvement of crystalline quality of a-plane GaN using one-step lateral growth. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 955, 1	
2	Fabrication of high-performance photodetector based on AlGaN/GaN hetero-field-effect transistors with p-GaN gate. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 955, 1	
1	Improved passivation depth of porous fluorescent 6H-SiC with Si/C faces using atomic layer deposition. <i>Japanese Journal of Applied Physics</i> , 2022 , 61, 035502	1.4