Guangyan Qing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4736153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How Many Lithium Ions Can Be Inserted onto Fused C ₆ Aromatic Ring Systems?. Angewandte Chemie - International Edition, 2012, 51, 5147-5151.	7.2	277
2	Functional biointerface materials inspired from nature. Chemical Society Reviews, 2011, 40, 2909.	18.7	248
3	Biomimetic Smart Interface Materials for Biological Applications. Advanced Materials, 2011, 23, H57-77.	11.1	242
4	Three-dimensional capillary ratchet-induced liquid directional steering. Science, 2021, 373, 1344-1348.	6.0	223
5	Chiral biointerface materials. Chemical Society Reviews, 2012, 41, 1972-1984.	18.7	181
6	Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. Journal of Materials Chemistry B, 2020, 8, 2951-2973.	2.9	126
7	Chiral Effect at Protein/Graphene Interface: A Bioinspired Perspective To Understand Amyloid Formation. Journal of the American Chemical Society, 2014, 136, 10736-10742.	6.6	105
8	Plasmonic and Photothermal Immunoassay via Enzyme-Triggered Crystal Growth on Gold Nanostars. Analytical Chemistry, 2019, 91, 2086-2092.	3.2	103
9	Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. TrAC - Trends in Analytical Chemistry, 2020, 124, 115570.	5.8	103
10	Robust Slippery Liquid-Infused Porous Network Surfaces for Enhanced Anti-icing/Deicing Performance. ACS Applied Materials & Interfaces, 2020, 12, 25471-25477.	4.0	98
11	Chiralityâ€Triggered Wettability Switching on a Smart Polymer Surface. Advanced Materials, 2011, 23, 1615-1620.	11.1	84
12	Nucleotide-Responsive Wettability on a Smart Polymer Surface. Journal of the American Chemical Society, 2009, 131, 8370-8371.	6.6	83
13	Solventâ€Driven Chiralâ€Interaction Reversion for Organogel Formation. Angewandte Chemie - International Edition, 2014, 53, 2124-2129.	7.2	71
14	Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides. Nature Communications, 2017, 8, 461.	5.8	71
15	New Opportunities and Challenges of Smart Polymers in Postâ€Translational Modification Proteomics. Advanced Materials, 2017, 29, 1604670.	11.1	62
16	Enantioselective Fluorescent Sensors for Chiral Carboxylates Based on Calix[4]arenes Bearing anL-Tryptophan Unit. European Journal of Organic Chemistry, 2007, 2007, 1768-1778.	1.2	57
17	Dualâ€Responsive Gold Nanoparticles for Colorimetric Recognition and Testing of Carbohydrates with a Dispersionâ€Dominated Chromogenic Process. Advanced Materials, 2013, 25, 749-754.	11.1	56
18	Fluorescent sensors for amino acid anions based on calix[4]arenes bearing two dansyl groups. Tetrahedron: Asymmetry, 2005, 16, 1527-1534.	1.8	54

#	Article	IF	CITATIONS
19	The transformation of chiral signals into macroscopic properties of materials using chirality-responsive polymers. NPG Asia Materials, 2012, 4, e4-e4.	3.8	54
20	Calix[4]arene-Based Chromogenic Chemosensor for the α-Phenylglycine Anion: Synthesis and Chiral Recognition. European Journal of Organic Chemistry, 2006, 2006, 1574-1580.	1.2	53
21	Bright Triplet Self-Trapped Excitons to Dopant Energy Transfer in Halide Double-Perovskite Nanocrystals. Nano Letters, 2021, 21, 8671-8678.	4.5	53
22	Variation of the Contact Time of Droplets Bouncing on Cylindrical Ridges with Ridge Size. Langmuir, 2017, 33, 7583-7587.	1.6	52
23	Dynamic Biointerfaces: From Recognition to Function. Small, 2015, 11, 1097-1112.	5.2	50
24	Saccharide-sensitive wettability switching on a smart polymer surface. Soft Matter, 2009, 5, 2759.	1.2	49
25	Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics. Physical Review Letters, 2021, 126, 234503.	2.9	44
26	Functional Nanochannels for Sensing Tyrosine Phosphorylation. Journal of the American Chemical Society, 2020, 142, 16324-16333.	6.6	42
27	High-Efficiency Phosphopeptide and Glycopeptide Simultaneous Enrichment by Hydrogen Bond–based Bifunctional Smart Polymer. Analytical Chemistry, 2020, 92, 6269-6277.	3.2	42
28	Stimuli-Directed Helical Chirality Inversion and Bio-Applications. Polymers, 2016, 8, 310.	2.0	41
29	Click Reaction for Reversible Encapsulation of Single Yeast Cells. ACS Nano, 2019, 13, 14459-14467.	7.3	41
30	Highly Strong and Solvent-Resistant Cellulose Nanocrystal Photonic Films for Optical Coatings. ACS Applied Materials & Interfaces, 2021, 13, 17118-17128.	4.0	41
31	Chiralityâ€Driven Wettability Switching and Mass Transfer. Angewandte Chemie - International Edition, 2014, 53, 930-932.	7.2	39
32	Bioinspired Saccharide–Saccharide Interaction and Smart Polymer for Specific Enrichment of Sialylated Glycopeptides. ACS Applied Materials & Interfaces, 2016, 8, 13294-13302.	4.0	39
33	Synthesis and chiral recognition of novel chiral fluorescence receptors bearing 9-anthryl moieties. Tetrahedron: Asymmetry, 2005, 16, 833-839.	1.8	35
34	Spatially Controlled DNA Nanopatterns by "Click―Chemistry Using Oligonucleotides with Different Anchoring Sites. Journal of the American Chemical Society, 2010, 132, 15228-15232.	6.6	35
35	Smart surface of water-induced superhydrophobicity. Chemical Communications, 2009, , 2658.	2.2	34
36	Droplet Asymmetric Bouncing on Inclined Superhydrophobic Surfaces. ACS Omega, 2019, 4, 12238-12243.	1.6	34

#	Article	IF	CITATIONS
37	Precision Spherical Nucleic Acids Enable Sensitive FEN1 Imaging and Controllable Drug Delivery for Cancer-Specific Therapy. Analytical Chemistry, 2021, 93, 11275-11283.	3.2	34
38	Biosynthesized Quantum Dot for Facile and Ultrasensitive Electrochemical and Electrochemiluminescence Immunoassay. Analytical Chemistry, 2020, 92, 1598-1604.	3.2	33
39	What Is Hidden Behind Schiff Base Hydrolysis? Dynamic Covalent Chemistry for the Precise Capture of Sialylated Glycans. Journal of the American Chemical Society, 2020, 142, 7627-7637.	6.6	33
40	Smart Drug Release Systems Based on Stimuli-Responsive Polymers. Mini-Reviews in Medicinal Chemistry, 2013, 13, 1369-1380.	1.1	33
41	Multimodal, Convertible, and Chiral Optical Films for Anti ounterfeiting Labels. Advanced Functional Materials, 2022, 32, .	7.8	33
42	Highly Tough, Stretchable, and Solventâ€Resistant Cellulose Nanocrystal Photonic Films for Mechanochromism and Actuator Properties. Small, 2022, 18, e2107105.	5.2	32
43	Dipeptide-Based Carbohydrate Receptors and Polymers for Glycopeptide Enrichment and Glycan Discrimination. ACS Applied Materials & amp; Interfaces, 2016, 8, 22084-22092.	4.0	31
44	Phage display derived peptides for Alzheimer's disease therapy and diagnosis. Theranostics, 2022, 12, 2041-2062.	4.6	31
45	Smart bio-separation materials. TrAC - Trends in Analytical Chemistry, 2020, 124, 115585.	5.8	30
46	Biomimetic nanochannels for the discrimination of sialylated glycans <i>via</i> a tug-of-war between glycan binding and polymer shrinkage. Chemical Science, 2020, 11, 748-756.	3.7	30
47	Directional Droplet Transport Mediated by Circular Groove Arrays. Part I: Experimental Findings. Langmuir, 2020, 36, 9608-9615.	1.6	30
48	Enantioselective recognition by optically active chiral fluorescence sensors bearing amino acid units. Tetrahedron: Asymmetry, 2005, 16, 3042-3048.	1.8	29
49	â€~Nakedâ€eye' enantioselective chemosensors for Nâ€protected amino acid anions bearing thiourea units. Chirality, 2009, 21, 363-373.	1.3	28
50	Sensitive fluorescent sensors for malate based on calix[4]arene bearing anthracene. Tetrahedron: Asymmetry, 2006, 17, 3144-3151.	1.8	27
51	Efficient enrichment of glycopeptides using phenylboronic acid polymer brush modified silica microspheres. Journal of Materials Chemistry B, 2014, 2, 2276-2281.	2.9	27
52	Superhydrophobic porous networks for enhanced droplet shedding. Scientific Reports, 2016, 6, 33817.	1.6	27
53	Highly selective and sensitive detection of trinitrotoluene by framework-enhanced fluorescence of gold nanoclusters. Analytica Chimica Acta, 2020, 1106, 133-138.	2.6	27
54	CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Science China Chemistry, 2020, 63, 1711-1715.	4.2	25

#	Article	IF	CITATIONS
55	Sialic Acid-Targeted Biointerface Materials and Bio-Applications. Polymers, 2017, 9, 249.	2.0	24
56	Chemoselectivity of Pristine Cellulose Nanocrystal Films Driven by Carbohydrate–Carbohydrate Interactions. ACS Applied Materials & Interfaces, 2019, 11, 13114-13122.	4.0	24
57	Developing an Inositol-Phosphate-Actuated Nanochannel System by Mimicking Biological Calcium Ion Channels. ACS Applied Materials & Interfaces, 2017, 9, 32554-32564.	4.0	23
58	Droplet dynamics on slippery surfaces: small droplet, big impact. Biosurface and Biotribology, 2019, 5, 35-45.	0.6	22
59	Selective electrocatalytic hydroboration of aryl alkenes. Green Chemistry, 2021, 23, 1691-1699.	4.6	22
60	Multi-Objective Optimizations of Biodegradable Polymer Stent Structure and Stent Microinjection Molding Process. Polymers, 2017, 9, 20.	2.0	21
61	Visible and Reversible Restrict of Molecular Configuration by Copper Ion and Pyrophosphate. ACS Sensors, 2020, 5, 2438-2447.	4.0	21
62	Precision photothermal therapy and photoacoustic imaging by <i>in situ</i> activatable thermoplasmonics. Chemical Science, 2021, 12, 10097-10105.	3.7	21
63	Chromogenic Chemosensors for <i>N</i> â€Acetylaspartate Based on Chiral Ferroceneâ€Bearing Thiourea Derivatives. European Journal of Organic Chemistry, 2009, 2009, 841-849.	1.2	20
64	Exploring the role of molecular chirality in the photo-responsiveness of dipeptide-based gels. Journal of Materials Chemistry B, 2017, 5, 3163-3171.	2.9	20
65	Cascaded Amplifier Nanoreactor for Efficient Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 16075-16083.	4.0	20
66	Novel chiral fluorescent macrocyclic receptors: synthesis and recognition for amino acid anions. Tetrahedron: Asymmetry, 2006, 17, 2143-2148.	1.8	19
67	Surface Stiffness—a Parameter for Sensing the Chirality of Saccharides. ACS Applied Materials & Interfaces, 2015, 7, 27223-27233.	4.0	19
68	Faceted and Circular Droplet Spreading on Hierarchical Superhydrophobic Surfaces. Langmuir, 2020, 36, 534-539.	1.6	19
69	Online Identification of Nonlinear Stochastic Spatiotemporal System With Multiplicative Noise by Robust Optimal Control-Based Kernel Learning Method. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 389-404.	7.2	18
70	Directional Droplet Transport Mediated by Circular Groove Arrays. Part II: Theory of Effect. Langmuir, 2021, 37, 1948-1953.	1.6	18
71	Novel chiral fluorescent chemosensors for malate and acidic amino acids based on two-arm thiourea and amide. Canadian Journal of Chemistry, 2008, 86, 170-176.	0.6	17
72	Chiral polymer-based biointerface materials. Science China Chemistry, 2014, 57, 540-551.	4.2	17

#	Article	IF	CITATIONS
73	Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter. Biosensors and Bioelectronics, 2022, 198, 113819.	5.3	17
74	Highly selective fluorescent recognition of phenyl amino alcohol based on ferrocenyl macrocyclic derivatives. Tetrahedron: Asymmetry, 2009, 20, 575-583.	1.8	16
75	New approach for chiral separation: from polysaccharide-based materials to chirality-responsive polymers. Science China Chemistry, 2014, 57, 1492-1506.	4.2	16
76	Smart polymer-based calcium-ion self-regulated nanochannels by mimicking the biological Ca2+-induced Ca2+ release process. NPG Asia Materials, 2019, 11, .	3.8	16
77	Molecular chirality mediated amyloid formation on phospholipid surfaces. Chemical Science, 2020, 11, 7369-7378.	3.7	16
78	Chiral Fluorescent Receptors based on Amino Acid Unit: Synthesis and Their Enantioselective Recognition. Supramolecular Chemistry, 2007, 19, 403-409.	1.5	15
79	Protein/Peptide Aggregation and Amyloidosis on Biointerfaces. Materials, 2016, 9, 740.	1.3	14
80	cAMP-modulated biomimetic ionic nanochannels based on a smart polymer. Journal of Materials Chemistry B, 2019, 7, 3710-3715.	2.9	14
81	Biomimetic ion nanochannels for sensing umami substances. Biomaterials, 2022, 282, 121418.	5.7	14
82	Highly selective fluorescent recognition of amino alcohol based on chiral calix[4]arenes bearing L-tryptophan unit. Supramolecular Chemistry, 2008, 20, 635-641.	1.5	13
83	A novel aggregation-induced emission enhancement triggered by the assembly of a chiral gelator: from non-emissive nanofibers to emissive micro-loops. Chemical Communications, 2017, 53, 447-450.	2.2	13
84	Supramolecular Coordination-Directed Reversible Regulation of Protein Activities at Epigenetic DNA Marks. Journal of the American Chemical Society, 2018, 140, 15842-15849.	6.6	13
85	Synchronous oil/water separation and wastewater treatment on a copper-oxide-coated mesh. RSC Advances, 2021, 11, 17740-17745.	1.7	13
86	Effective nanotherapeutic approach for metastatic breast cancer treatment by supplemental oxygenation and imaging-guided phototherapy. Nano Research, 2020, 13, 1111-1121.	5.8	12
87	Disaccharide-driven transition of macroscopic properties: from molecular recognition to glycopeptide enrichment. Chemical Communications, 2015, 51, 16111-16114.	2.2	11
88	Rapid and high-efficiency discrimination of different sialic acid species using dipeptide-based fluorescent sensors. Analyst, The, 2017, 142, 3564-3568.	1.7	11
89	A biomimetic design for a sialylated, glycan-specific smart polymer. NPG Asia Materials, 2018, 10, e472-e472.	3.8	11
90	Biomimetic calcium-inactivated ion/molecular channel. Chemical Communications, 2021, 57, 7914-7917.	2.2	11

#	Article	IF	CITATIONS
91	Calix[4]areneâ€Based Enantioselective Fluorescent Sensors for the Recognition of Nâ€Acetylâ€aspartate. Chinese Journal of Chemistry, 2008, 26, 721-728.	2.6	10
92	Novel nanoporous covalent organic frameworks for the selective extraction of endogenous peptides. RSC Advances, 2018, 8, 37528-37533.	1.7	10
93	Selective enrichment of sialylated glycopeptides with a <scp>d</scp> -allose@SiO ₂ matrix. RSC Advances, 2018, 8, 38780-38786.	1.7	10
94	A high-tap-density nanosphere-assembled microcluster to simultaneously enable high gravimetric, areal and volumetric capacities: a case study of TiO ₂ anode. Journal of Materials Chemistry A, 2018, 6, 11916-11928.	5.2	10
95	Enantioselective Fluorescent Recognition of Amino Alcohol Based on Calix[4]arenes Bearing Diphenylethylenediamine Units. Supramolecular Chemistry, 2008, 20, 265-271.	1.5	9
96	CH-Ï€ Interaction Driven Macroscopic Property Transition on Smart Polymer Surface. Scientific Reports, 2015, 5, 15742.	1.6	9
97	A methylation-inspired mesoporous coordination polymer for identification and removal of organic pollutants in aqueous solutions. Journal of Materials Chemistry B, 2021, 9, 638-647.	2.9	9
98	A novel aggregation-induced enhanced emission aromatic molecule: 2-aminophenylboronic acid dimer. Chemical Science, 2021, 12, 12437-12444.	3.7	9
99	Solid-state nanopores and nanochannels for the detection of biomolecules. Chemical Physics Reviews, 2021, 2, 021306.	2.6	9
100	Sialic acid-triggered macroscopic properties switching on a smart polymer surface. Applied Surface Science, 2018, 427, 1152-1164.	3.1	8
101	One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets. Journal of Colloid and Interface Science, 2020, 569, 229-234.	5.0	8
102	Discerning Tyrosine Phosphorylation from Multiple Phosphorylations Using a Nanofluidic Logic Platform. Analytical Chemistry, 2021, 93, 16113-16122.	3.2	8
103	Label-Free, Versatile, Real-Time, and High-Throughput Monitoring of Tyrosine Phosphorylation Based on Reversible Configuration Freeze. CCS Chemistry, 2023, 5, 1443-1461.	4.6	8
104	Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching. Scientific Reports, 2017, 7, 40913.	1.6	7
105	Circularly polarized light modulated supramolecular self-assembly for an azobenzene-based chiral gel. RSC Advances, 2019, 9, 10360-10363.	1.7	7
106	Comment on Preparation of Vortex Porous Graphene Chiral Membrane for Enantioselective Separation. Analytical Chemistry, 2021, 93, 4682-4684.	3.2	7
107	Multibioinspired JANUS Membranes with Spatial Surface Refreshment for Enhanced Fog Collection. Advanced Materials Interfaces, 2021, 8, 2101212.	1.9	7
108	Smart polymers driven by multiple and tunable hydrogen bonds for intact phosphoprotein enrichment. Science and Technology of Advanced Materials, 2019, 20, 858-869.	2.8	6

#	Article	IF	CITATIONS
109	Synthesis and Enantioselective Discrimination of Chiral Fluorescence Receptors Bearing Amino Acid Units. Chinese Journal of Chemistry, 2007, 25, 390-394.	2.6	5
110	Identification of Nonlinear Spatiotemporal Dynamical Systems With Nonuniform Observations Using Reproducing-Kernel-Based Integral Least Square Regulation. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 2399-2412.	7.2	5
111	Highly Efficient Separation of Methylated Peptides Utilizing Selective Complexation between Lysine and 18-Crown-6. Analytical Chemistry, 2020, 92, 15663-15670.	3.2	5
112	Optimum Anti-erosion Structures and Anti-erosion Mechanism for Rotatory Samples Inspired by Scorpion Armor of Parabuthus transvaalicus. Journal of Bionic Engineering, 2021, 18, 92-102.	2.7	5
113	High-Efficiency Directional Ejection of Coalesced Drops on a Circular Groove. Langmuir, 2022, 38, 4028-4035.	1.6	5
114	Approximate controllability of nonlinear stochastic partial differential systems with infinite delay. Advances in Difference Equations, 2015, 2015, .	3.5	4
115	cAMP sensitive nanochannels driven by conformational transition of a tripeptide-based smart polymer. Chemical Communications, 2020, 56, 3425-3428.	2.2	4
116	Sialylated glycan-modulated biomimetic ion nanochannels driven by carbohydrate–carbohydrate interactions. NPG Asia Materials, 2022, 14, .	3.8	4
117	Sensing Mechanism of <scp>Excitedâ€State</scp> Intermolecular Hydrogen Bond for Phthalimide: Indispensable Role of Dimethyl Sulfoxide. Chinese Journal of Chemistry, 2021, 39, 1113-1120.	2.6	3
118	Remarkable difference of phospholipid molecular chirality in regulating PrP aggregation and cell responses. Chinese Chemical Letters, 2023, 34, 107332.	4.8	3
119	Enrichment of IgG and HRP glycoprotein by dipeptide-based polymeric material. Talanta, 2022, 241, 123223.	2.9	2
120	Sensitive chemoselectivity of cellulose nanocrystal films. Cellulose, 2022, 29, 4097-4107.	2.4	2
121	Self-assembly gel-based dynamic response system for specific recognition of N-acetylneuraminic acid. Journal of Materials Chemistry B, 2021, 9, 4690-4699.	2.9	1
122	Synthesis of optically active chiral mesoporous molybdenum carbide film. Journal of Industrial and Engineering Chemistry, 2021, 94, 482-488.	2.9	1
123	Bioinspired Sialic Acid Regulated Ion Nanochannel. Advanced Materials Interfaces, 0, , 2200186.	1.9	1
124	High-efficiency two-dimensional separation of natural products based on β-cyclodextrin stationary phase working in both hydrophilic and reversed hydrophobic modes. Journal of Chromatography A, 2022, 1673, 463069.	1.8	1
125	Aspartic Acid-Modified Phospholipids Regulate Cell Response and Rescue Memory Deficits in APP/PS1 Transgenic Mice. ACS Chemical Neuroscience, 2022, 13, 2154-2163.	1.7	1

126 Switchable Wettability: Chirality-Triggered Wettability Switching on a Smart Polymer Surface (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
127	Magnetic Fe3O4@mTiO2-AIPA Microspheres for Separation of Phosphoproteins and Non-phosphoproteins. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 752-759.	0.4	ο
128	One-Step Fabrication of Hot-Water-Repellent Surfaces. Biomimetics, 2022, 7, 72.	1.5	0