Lin Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4735727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Physical Review Physics Education Research, 2006, 2, .	1.7	247
2	Approaches to data analysis of multiple-choice questions. Physical Review Physics Education Research, 2009, 5, .	1.7	164
3	Learning and Scientific Reasoning. Science, 2009, 323, 586-587.	12.6	163
4	Verification of causal influences of reasoning skills and epistemology on physics conceptual learning. Physical Review Physics Education Research, 2014, 10, .	1.7	42
5	Tale of two curricula: The performance of 2000 students in introductory electromagnetism. Physical Review Physics Education Research, 2009, 5, .	1.7	39
6	Does Higher Education Improve Student Scientific Reasoning Skills?. International Journal of Science and Mathematics Education, 2016, 14, 619-634.	2.5	39
7	Peer Instruction in introductory physics: A method to bring about positive changes in students' attitudes and beliefs. Physical Review Physics Education Research, 2017, 13, .	2.9	37
8	Exploring the role of conceptual scaffolding in solving synthesis problems. Physical Review Physics Education Research, 2011, 7, .	1.7	34
9	How do students in an innovative principleâ€based mechanics course understand energy concepts?. Journal of Research in Science Teaching, 2013, 50, 722-747.	3.3	34
10	Seeking missing pieces in science concept assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch analysis. Physical Review Physics Education Research, 2014, 10, .	1.7	26
11	Are we asking the right questions? Validating clicker question sequences by student interviews. American Journal of Physics, 2009, 77, 643-650.	0.7	25
12	Effects of testing conditions on conceptual survey results. Physical Review Physics Education Research, 2008, 4, .	1.7	22
13	Variations in University Students' Scientific Reasoning Skills Across Majors, Years, and Types of Institutions. Research in Science Education, 2016, 46, 613-632.	2.3	22
14	Learning of content knowledge and development of scientific reasoning ability: A cross culture comparison. American Journal of Physics, 2009, 77, 1118-1123.	0.7	21
15	Progression Trend of Scientific Reasoning from Elementary School to University: a Large-Scale Cross-Grade Survey Among Chinese Students. International Journal of Science and Mathematics Education, 2018, 16, 1479-1498.	2.5	21
16	Theoretical perspectives of quantitative physics education research. Physical Review Physics Education Research, 2019, 15, .	2.9	21
17	Large-scale survey of Chinese precollege students' epistemological beliefs about physics: A progression or a regression?. Physical Review Physics Education Research, 2013, 9, .	1.7	20
18	Single-Concept Clicker Question Sequences. Physics Teacher, 2011, 49, 385-389.	0.3	14

Lin Ding

#	Article	IF	CITATIONS
19	Making of epistemologically sophisticated physics teachers: A cross-sequential study of epistemological progression from preservice to in-service teachers. Physical Review Physics Education Research, 2016, 12, .	2.9	13
20	Students' conceptual performance on synthesis physics problems with varying mathematical complexity. Physical Review Physics Education Research, 2017, 13, .	2.9	12
21	How College-Level Introductory Instruction Can Impact Student Epistemological Beliefs. Journal of College Science Teaching, 2015, 044, .	0.4	11
22	Using Conceptual Scaffolding to Foster Effective Problem Solving. , 2009, , .		10
23	Sequential and simultaneous synthesis problem solving: A comparison of students' gaze transitions. Physical Review Physics Education Research, 2021, 17, .	2.9	10
24	How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students' mathematical performance. Physical Review Physics Education Research, 2017, 13, .	2.9	9
25	Sustained Effects of Solving Conceptually Scaffolded Synthesis Problems. , 2010, , .		8
26	Uncovering the hidden meaning of cross-curriculum comparison results on the Force Concept Inventory. Physical Review Physics Education Research, 2014, 10, .	1.7	8
27	What works with worked examples: Extending self-explanation and analogical comparison to synthesis problems. Physical Review Physics Education Research, 2017, 13, .	2.9	8
28	LONG LIVE TRADITIONAL TEXTBOOK PROBLEMS!?—CONSTRAINTS ON FACULTY USE OF RESEARCH-BASED PROBLEMS IN INTRODUCTORY COURSES. International Journal of Science and Mathematics Education, 2014, 12, 123-144.	2.5	7
29	Two-phase study examining perspectives and use of quantitative methods in physics education research. Physical Review Physics Education Research, 2019, 15, .	2.9	7
30	From Learning Capacitance to Making Capacitors: the Missing Critical Sensemaking. International Journal of Science and Mathematics Education, 2020, 19, 1357.	2.5	6
31	Applying Rasch theory to evaluate the construct validity of brief electricity and magnetism assessment. AIP Conference Proceedings, 2012, , .	0.4	5
32	Peer Instruction in introductory physics: A method to bring about positive changes in students' attitudes and beliefs. Physical Review Physics Education Research, 2017, 113, .	2.9	5
33	Establishing reliability and validity: An ongoing process. AIP Conference Proceedings, 2013, , .	0.4	4
34	A comparative study of middle school and high school students' views about physics and learning physics. , 2013, , .		2
35	Scientific Reasoning: Theory Evidence Coordination in Physics-based and Non-physics-based Tasks. African Journal of Research in Mathematics, Science and Technology Education, 2016, 20, 93-105.	1.0	2
36	Construction and Evaluation of an Instrument to Measure High School Students Biological Content Knowledge. Eurasia Journal of Mathematics, Science and Technology Education, 2021, 17, em2048.	1.3	2

Lin Ding

#	Article	IF	CITATIONS
37	Using sequential synthesis problems to investigate novice teachers' conceptions of hydrodynamics. Physical Review Physics Education Research, 2021, 17, .	2.9	1
38	Synthesis problems: role of mathematical complexity in students' problem solving strategies. , 0, , .		1
39	Representational Use on a Lab Question by Modeling Workshop Participants. , 0, , .		1
40	Changing Culture and Climate to Prevent Sexual Harassment in the Physics Educational Setting. Physics Teacher, 2020, 58, 352-355.	0.3	0
41	Detecting Progression of Scientific Reasoning among University Science and Engineering Students. , 0,		0
42	Sensitivity of Learning Gains on the Force Concept Inventory to Students' Individual Epistemological Changes. , 0, , .		0
43	Bottlenecks in Solving Synthesis Problems. , 0, , .		0
44	Applying analogical reasoning to introductory-level synthesis problems. , 0, , .		0
45	Student Mental Models about Conductors and Dielectrics. , 0, , .		0
46	How Freshmen Generate Evidence for Reasoning in Physics and Non-physics Tasks?. , 0, , .		0