Vamsee K Voora

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4735242/vamsee-k-voora-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24 964 16 24 g-index

24 g-index

24 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
24	Molecular Electron Affinities Using the Generalized Kohn-Sham Semicanonical Projected Random Phase Approximation. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 433-439	6.4	3
23	Exploring the Solvation of Acetic Acid in Water Using Liquid Jet X-ray Photoelectron Spectroscopy and Core Level Electron Binding Energy Calculations. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 8862-8	88 88	3
22	TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. <i>Journal of Chemical Physics</i> , 2020 , 152, 184107	3.9	255
21	Variational generalized Kohn-Sham approach combining the random-phase-approximation and Green's-function methods. <i>Physical Review A</i> , 2019 , 99,	2.6	22
20	Assessment of Density Functional Theory in Predicting Interaction Energies between Water and Polycyclic Aromatic Hydrocarbons: from Water on Benzene to Water on Graphene. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 2359-2374	6.4	13
19	Effective one-particle energies from generalized Kohn-Sham random phase approximation: A direct approach for computing and analyzing core ionization energies. <i>Journal of Chemical Physics</i> , 2019 , 151, 134106	3.9	10
18	Understanding the role of intermolecular interactions between lissoclimides and the eukaryotic ribosome. <i>Nucleic Acids Research</i> , 2019 , 47, 3223-3232	20.1	10
17	Metal versus Ligand Reduction in Ln Complexes of a Mesitylene-Anchored Tris(Aryloxide) Ligand. <i>Inorganic Chemistry</i> , 2018 , 57, 2823-2833	5.1	31
16	Using Diamagnetic Yttrium and Lanthanum Complexes to Explore Ligand Reduction and C-H Bond Activation in a Tris(aryloxide)mesitylene Ligand System. <i>Inorganic Chemistry</i> , 2018 , 57, 12876-12884	5.1	13
15	Random-Phase Approximation Methods. Annual Review of Physical Chemistry, 2017, 68, 421-445	15.7	80
14	Comparisons of lanthanide/actinide +2 ions in a tris(aryloxide)arene coordination environment. <i>Chemical Science</i> , 2017 , 8, 7424-7433	9.4	57
13	Theoretical approaches for treating non-valence correlation-bound anions. <i>Journal of Chemical Physics</i> , 2017 , 147, 214114	3.9	25
12	Synthesis facilitates an understanding of the structural basis for translation inhibition by the lissoclimides. <i>Nature Chemistry</i> , 2017 , 9, 1140-1149	17.6	29
11	Application of electronic structure methods to coupled Drude oscillators. <i>Chemical Physics Letters</i> , 2015 , 630, 76-79	2.5	4
10	Nonvalence Correlation-Bound Anion States of Polycyclic Aromatic Hydrocarbons. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3994-7	6.4	16
9	Negative electron affinities from conventional electronic structure methods. <i>Theoretical Chemistry Accounts</i> , 2014 , 133, 1	1.9	46
8	Nonvalence correlation-bound anion state of C6F6: doorway to low-energy electron capture. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 7201-5	2.8	37

LIST OF PUBLICATIONS

7	Nonvalence correlation-bound anion states of spherical fullerenes. <i>Nano Letters</i> , 2014 , 14, 4602-6	11.5	20
6	Existence of a Correlation Bound s-Type Anion State of C60. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 849-53	6.4	59
5	A self-consistent polarization potential model for describing excess electrons interacting with water clusters. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 4365-70	3.4	29
4	An Assessment of the vdW-TS Method for Extended Systems. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 1503-13	6.4	95
3	Benchmark Calculations of the Energies for Binding Excess Electrons to Water Clusters. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 893-900	6.4	34
2	Bottom-up view of water network-mediated CO2 reduction using cryogenic cluster ion spectroscopy and direct dynamics simulations. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 903-12	2.8	18
1	Density functional theory study of pyrophyllite and M-montmorillonites (M = Li, Na, K, Mg, and Ca): role of dispersion interactions. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 9695-703	2.8	55