Xing-Zhong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4734872/publications.pdf

Version: 2024-02-01

142 papers 8,667 citations

45 h-index 90 g-index

144 all docs

144 docs citations

times ranked

144

11620 citing authors

#	Article	IF	CITATIONS
1	Optimized crystallization and defect passivation with Yttrium (III) doped MAPbBr3 film for highly efficient and stable hole-transport-layer-free carbon-based perovskite solar cells. Journal of Alloys and Compounds, 2022, 890, 161909.	2.8	5
2	A light-induced hydrogel responsive platform to capture and selectively isolate single circulating tumor cells. Nanoscale, 2022, 14, 3504-3512.	2.8	4
3	Multifunctional Gelatin-Nanoparticle-Modified Chip for Enhanced Capture and Non-Destructive Release of Circulating Tumor Cells. Micromachines, 2022, 13, 395.	1.4	2
4	Modulated crystal growth enables efficient and stable perovskite solar cells in humid air. Chemical Engineering Journal, 2022, 442, 136267.	6.6	9
5	Noninvasive Optical Isolation and Identification of Circulating Tumor Cells Engineered by Fluorescent Microspheres. ACS Applied Bio Materials, 2022, 5, 2768-2776.	2.3	6
6	Neutrophil membrane-coated immunomagnetic nanoparticles for efficient isolation and analysis of circulating tumor cells. Biosensors and Bioelectronics, 2022, 213, 114425.	5.3	15
7	Microfluidics-Assisted Fluorescence Mapping of DNA Phosphorothioation. Analytical Chemistry, 2022, 94, 10479-10486.	3.2	1
8	Deep learning of brain magnetic resonance images: A brief review. Methods, 2021, 192, 131-140.	1.9	28
9	Highly biocompatible and recyclable biomimetic nanoparticles for antibiotic-resistant bacteria infection. Biomaterials Science, 2021, 9, 826-834.	2.6	28
10	Enhanced Isolation of Fetal Nucleated Red Blood Cells by Enythrocyte-Leukocyte Hybrid Membrane-Coated Magnetic Nanoparticles for Noninvasive Pregnant Diagnostics. Analytical Chemistry, 2021, 93, 1033-1042.	3.2	28
11	The isolation and analysis of fetal nucleated red blood cells using multifunctional microbeads with a nanostructured coating toward early noninvasive prenatal diagnostics. Journal of Materials Chemistry B, 2021, 9, 3047-3054.	2.9	10
12	Interfacial Engineering via Selfâ€Assembled Thiol Silane for High Efficiency and Stability Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100128.	3.1	24
13	Detection of circulating tumor cells and single cell extraction technology: principle, effect and application prospect. Nano Futures, 2021, 5, 032002.	1.0	5
14	Reducing the Energy Loss to Achieve High Openâ€circuit Voltage and Efficiency by Coordinating Energyâ€Level Matching in Sn–Pb Binary Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100287.	3.1	19
15	FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells. ACS Applied Materials & Solar Cells	4.0	24
16	Solution-processed NiO _x nanoparticles with a wide pH window as an efficient hole transport material for high performance tin-based perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 144002.	1.3	8
17	Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells. ACS Applied Bio Materials, 2021, 4, 1140-1155.	2.3	19
18	Tailoring the Energy Band Structure and Interfacial Morphology of the ETL via Controllable Nanocluster Size Achieves High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & 2021, 13, 48555-48568.	4.0	8

#	Article	IF	CITATIONS
19	Electrochemical Deposited Calcium Phosphate Nanomaterials with Microâ€Nano Interface for Capture and Nonâ€Invasive Release of Cancer Cells. Advanced Materials Interfaces, 2021, 8, 2101097.	1.9	2
20	ZnO nanowire-integrated bio-microchips for specific capture and non-destructive release of circulating tumor cells. Nanoscale, 2020, 12, 1455-1463.	2.8	31
21	Silica microbeads capture fetal nucleated red blood cells for noninvasive prenatal testing of fetal ABO genotype. Electrophoresis, 2020, 41, 966-972.	1.3	9
22	Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angewandte Chemie - International Edition, 2020, 59, 4075-4081.	7.2	32
23	δâ€CsPbl ₃ Intermediate Phase Growth Assisted Sequential Deposition Boosts Stable and Highâ€Efficiency Triple Cation Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1908343.	7.8	40
24	A Biocompatible Nanofibersâ€Based Microchip for Isolation and Nondestructive Release of Fetal Nucleated Red Blood Cells. Advanced Materials Interfaces, 2020, 7, 2001028.	1.9	6
25	High-throughput isolation of fetal nucleated red blood cells by multifunctional microsphere-assisted inertial microfluidics. Biomedical Microdevices, 2020, 22, 75.	1.4	14
26	Electrophoretic Deposited Black Phosphorus on 3D Porous Current Collectors to Regulate Li Nucleation for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Description (12, 51563-51572).	4.0	30
27	Î'â€CsPbl ₃ Intermediate Phase Growth: Î'â€CsPbl ₃ Intermediate Phase Growth Assiste Sequential Deposition Boosts Stable and Highâ€Efficiency Triple Cation Perovskite Solar Cells (Adv.) Tj ETQq1 1		rgBT /Overlo
28	Precursor engineering for performance enhancement of hole-transport-layer-free carbon-based MAPbBr3 perovskite solar cells. Journal of Alloys and Compounds, 2020, 832, 154902.	2.8	18
29	Two dimensional graphitic carbon nitride quantum dots modified perovskite solar cells and photodetectors with high performances. Journal of Power Sources, 2020, 451, 227825.	4.0	44
30	Electrospun degradable Zn-Mn oxide hierarchical nanofibers for specific capture and efficient release of circulating tumor cells. Nanotechnology, 2020, 31, 495102.	1.3	6
31	Highâ€Efficiency and Reliable Smart Photovoltaic Windows Enabled by Multiresponsive Liquid Crystal Composite Films and Semiâ€Transparent Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900720.	10.2	34
32	Biomimetic Immunomagnetic Nanoparticles with Minimal Nonspecific Biomolecule Adsorption for Enhanced Isolation of Circulating Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28732-28739.	4.0	49
33	An Acoustic Droplet-Induced Enzyme Responsive Platform for the Capture and On-Demand Release of Single Circulating Tumor Cells. ACS Applied Materials & Description (1988) 11, 41118-41126.	4.0	30
34	Smart Photovoltaic Windows: Highâ€Efficiency and Reliable Smart Photovoltaic Windows Enabled by Multiresponsive Liquid Crystal Composite Films and Semiâ€Transparent Perovskite Solar Cells (Adv.) Tj ETQq0 0	0 n gn8. 12/0n	verlock 10 Tf
35	3D stable hosts with controllable lithiophilic architectures for high-rate and high-capacity lithium metal anodes. Journal of Power Sources, 2019, 442, 227214.	4.0	25
36	A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells. Lab on A Chip, 2019, 19, 422-431.	3.1	25

#	Article	IF	CITATIONS
37	Highly efficient and stable air-processed hole-transport-material free carbon based perovskite solar cells with caesium incorporation. Chemical Communications, 2019, 55, 218-221.	2.2	19
38	Performance enhancement of hole-transport material free perovskite solar cells with TiO2 nanorods modified with SiO2/NaYF4:Yb,Er@SiO2 for upconversion and charge recombination suppression. Organic Electronics, 2019, 73, 152-158.	1.4	15
39	Multifunctional Gelatin Nanoparticle Integrated Microchip for Enhanced Capture, Release, and Analysis of Circulating Tumor Cells. Particle and Particle Systems Characterization, 2019, 36, 1900076.	1.2	10
40	Capture and "self-release―of circulating tumor cells using metal–organic framework materials. Nanoscale, 2019, 11, 8293-8303.	2.8	25
41	Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold. Journal of Power Sources, 2019, 422, 138-144.	4.0	37
42	TiO ₂ nanopillar arrays coated with gelatin film for efficient capture and undamaged release of circulating tumor cells. Nanotechnology, 2019, 30, 335101.	1.3	16
43	Near-Infrared Light-Sensitive Hole-Transport-Layer Free Perovskite Solar Cells and Photodetectors with Hexagonal NaYF ₄ :Yb ³⁺ ,Tm ³⁺ @SiO ₂ Upconversion Nanoprism-Modified TiO ₂ Scaffold. ACS Sustainable Chemistry and Engineering, 2019, 7, 8236-8244.	3.2	32
44	Cancer Stem Cellâ€Platelet Hybrid Membraneâ€Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Advanced Functional Materials, 2019, 29, 1807733.	7.8	137
45	Cancer Cell Membrane Camouflaged Nanoparticles to Realize Starvation Therapy Together with Checkpoint Blockades for Enhancing Cancer Therapy. ACS Nano, 2019, 13, 2849-2857.	7.3	253
46	The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers. Lab on A Chip, 2019, 19, 3922-3930.	3.1	26
47	Fully Airâ€Processed Carbonâ€Based Efficient Hole Conductor Free Planar Heterojunction Perovskite Solar Cells With High Reproducibility and Stability. Solar Rrl, 2019, 3, 1800297.	3.1	20
48	Enhanced isolation and release of fetal nucleated red blood cells using multifunctional nanoparticle-based microfluidic device for non-invasive prenatal diagnostics. Sensors and Actuators B: Chemical, 2019, 281, 131-138.	4.0	26
49	A Biomimetic Nanodecoy Traps Zika Virus To Prevent Viral Infection and Fetal Microcephaly Development. Nano Letters, 2019, 19, 2215-2222.	4.5	69
50	Engineered red blood cells for capturing circulating tumor cells with high performance. Nanoscale, 2018, 10, 6014-6023.	2.8	44
51	Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology, 2018, 29, 134004.	1.3	91
52	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie, 2018, 130, 998-1003.	1.6	18
53	Synergistic Interlayer and Defect Engineering in VS ₂ Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Small, 2018, 14, 1703098.	5.2	180
54	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie - International Edition, 2018, 57, 986-991.	7.2	132

#	Article	IF	CITATIONS
55	Cancer Theranostics: Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death (Adv. Funct. Mater. 37/2018). Advanced Functional Materials, 2018, 28, 1870265.	7.8	4
56	Highly Conductive and Robust Three-Dimensional Host with Excellent Alkali Metal Infiltration Boosts Ultrastable Lithium and Sodium Metal Anodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21254-21261.	4.0	55
57	Non-invasive Prenatal Diagnosis of Chromosomal Aneuploidies and Microdeletion Syndrome Using Fetal Nucleated Red Blood Cells Isolated by Nanostructure Microchips. Theranostics, 2018, 8, 1301-1311.	4.6	34
58	Myeloidâ€Derived Suppressor Cell Membraneâ€Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death. Advanced Functional Materials, 2018, 28, 1801389.	7.8	140
59	Gelatin Nanoparticle-Coated Silicon Beads for Density-Selective Capture and Release of Heterogeneous Circulating Tumor Cells with High Purity. Theranostics, 2018, 8, 1624-1635.	4.6	66
60	Synergistic effects of thiocyanate additive and cesium cations on improving the performance and initial illumination stability of efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2435-2441.	2.5	27
61	Platelet–Leukocyte Hybrid Membraneâ€Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells. Advanced Functional Materials, 2018, 28, 1803531.	7.8	154
62	Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO. Scientific Reports, 2018, 8, 10691.	1.6	110
63	Early Cancer Diagnosis: Platelet–Leukocyte Hybrid Membraneâ€Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells (Adv. Funct. Mater. 34/2018). Advanced Functional Materials, 2018, 28, 1870241.	7.8	1
64	The Overall Release of Circulating Tumor Cells by Using Temperature Control and Matrix Metalloproteinase-9 Enzyme on Gelatin Film. ACS Applied Bio Materials, 2018, 1, 910-916.	2.3	8
65	Highly sensitive and rapid isolation of fetal nucleated red blood cells with microbead-based selective sedimentation for non-invasive prenatal diagnostics. Nanotechnology, 2018, 29, 434001.	1.3	20
66	Biocompatible fabrication of cell-laden calcium alginate microbeads using microfluidic double flow-focusing device. Sensors and Actuators A: Physical, 2018, 279, 313-320.	2.0	20
67	Improving the performance through SPR effect by employing Au@SiO2 core-shell nanoparticles incorporated TiO2 scaffold in efficient hole transport material free perovskite solar cells. Electrochimica Acta, 2018, 282, 10-15.	2.6	20
68	Antitumor Plateletâ€Mimicking Magnetic Nanoparticles. Advanced Functional Materials, 2017, 27, 1604774.	7.8	152
69	Hydrothermal synthesis of TiO ₂ nanoparticles doped with trace amounts of strontium, and their application as working electrodes for dye sensitized solar cells: tunable electrical properties & properties amp; enhanced photo-conversion performance. RSC Advances, 2017, 7, 2358-2364.	1.7	40
70	Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy. ACS Nano, 2017, 11, 3496-3505.	7.3	377
71	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	19.8	634
72	Theranostics: Antitumor Plateletâ€Mimicking Magnetic Nanoparticles (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	7.8	1

#	Article	IF	CITATIONS
73	Multi-walled carbon nanotubes induced a controllable TiO ₂ morphology transformation for high-rate and long-life lithium-ion batteries. RSC Advances, 2017, 7, 21988-21996.	1.7	13
74	Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700414.	10.2	190
75	Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy, 2017, 35, 223-232.	8.2	162
76	Fetal nucleated red blood cell analysis for non-invasive prenatal diagnostics using a nanostructure microchip. Journal of Materials Chemistry B, 2017, 5, 226-235.	2.9	34
77	Effective capture and release of circulating tumor cells using core-shell Fe3O4@MnO2 nanoparticles. Chemical Physics Letters, 2017, 668, 35-41.	1.2	15
78	Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement. Journal of Materials Chemistry A, 2017, 5, 1658-1666.	5.2	364
79	W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. Journal of Power Sources, 2017, 342, 489-494.	4.0	71
80	Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging. ACS Applied Materials & Interfaces, 2017, 9, 2159-2168.	4.0	195
81	Effective cancer targeting and imaging using macrophage membraneâ€camouflaged upconversion nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 521-530.	2.1	83
82	Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12080-12087.	5.2	210
83	Stable Organic–Inorganic Perovskite Solar Cells without Holeâ€Conductor Layer Achieved via Cell Structure Design and Contact Engineering. Advanced Functional Materials, 2016, 26, 4866-4873.	7.8	84
84	Efficient Purification and Release of Circulating Tumor Cells by Synergistic Effect of Biomarker and SiO ₂ @Gelâ€Microbeadâ€Based Size Difference Amplification. Advanced Healthcare Materials, 2016, 5, 1554-1559.	3.9	44
85	Copperâ€Doped Chromium Oxide Holeâ€Transporting Layer for Perovskite Solar Cells: Interface Engineering and Performance Improvement. Advanced Materials Interfaces, 2016, 3, 1500799.	1.9	72
86	Ultraviolet-assisted microfluidic generation of ferroelectric composite particles. Biomicrofluidics, 2016, 10, 024106.	1.2	2
87	Microfluidic synthesis of multiferroic Janus particles with disk-like compartments. Applied Physics Letters, 2016, 108, .	1.5	13
88	Three-dimensional valve-based controllable PDMS nozzle for dynamic modulation of droplet generation. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	11
89	Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment. Journal of Power Sources, 2016, 319, 111-115.	4.0	46
90	Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells. Journal of Power Sources, 2016, 321, 71-75.	4.0	46

#	Article	IF	Citations
91	One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe ³⁺ & Cl ^{â^'} co-mediated polyol method and their application as transparent conductive films. Nanoscale, 2016, 8, 18121-18133.	2.8	66
92	Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 2854-2860.	2.1	25
93	Low-cost and Efficient Hole-Transport-Material-free perovskite solar cells employing controllable electron-transport layer based on P25 nanoparticles. Electrochimica Acta, 2016, 213, 83-88.	2.6	33
94	Photocatalytic Degradation of Cell Membrane Coatings for Controlled Drug Release. Advanced Healthcare Materials, 2016, 5, 1420-1427.	3.9	49
95	Cancer Cell Membrane oated Upconversion Nanoprobes for Highly Specific Tumor Imaging. Advanced Materials, 2016, 28, 3460-3466.	11.1	420
96	Pt-sputtering-like NiCo2S4 counter electrode for efficient dye-sensitized solar cells. Electrochimica Acta, 2016, 192, 521-528.	2.6	46
97	Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology, 2016, 27, 085106.	1.3	99
98	A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization. Nanoscale, 2016, 8, 5847-5851.	2.8	25
99	Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small, 2015, 11, 6225-6236.	5.2	353
100	A Concentration-Controllable Microfluidic Droplet Mixer for Mercury Ion Detection. Micromachines, 2015, 6, 915-925.	1.4	3
101	Hierarchical donut-shaped LiMn ₂ O ₄ as an advanced cathode material for lithium-ion batteries with excellent rate capability and long cycle life. Journal of Materials Chemistry A, 2015, 3, 8165-8170.	5.2	32
102	One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting. AIP Advances, 2015, 5, .	0.6	24
103	Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature Communications, 2015, 6, 6700.	5.8	358
104	Capture and release of cancer cells using electrospun etchable MnO2 nanofibers integrated in microchannels. Applied Physics Letters, 2015, 106, .	1.5	41
105	Capture and Release of Cancer Cells by Combining On-Chip Purification and Off-Chip Enzymatic Treatment. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24001-24007.	4.0	55
106	Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture. International Journal of Nanomedicine, 2014, 9, 2569.	3.3	16
107	Generation of BiFeO3-Fe3O4 Janus particles based on droplet microfluidic method. Applied Physics Letters, 2014, 105, .	1.5	11
108	Facile synthesis of gradient mesoporous carbon monolith based on polymerization-induced phase separation. Functional Materials Letters, 2014, 07, 1450055.	0.7	4

#	Article	IF	CITATIONS
109	The effect of Mg doping on the dielectric and tunable properties of Pb0.3Sr0.7TiO3 thin films prepared by sol–gel method. Applied Physics A: Materials Science and Processing, 2014, 114, 777-783.	1.1	12
110	Capture and Release of Cancer Cells Based on Sacrificeable Transparent MnO ₂ Nanospheres Thin Film. Advanced Healthcare Materials, 2014, 3, 1420-1425.	3.9	38
111	Efficient dye-sensitized solar cells employing highly environmentally-friendly ubiquinone 10 based I2-free electrolyte inspired by photosynthesis. Journal of Materials Chemistry A, 2014, 2, 9007-9010.	5.2	14
112	Photovoltaic performance improvement of dye-sensitized solar cells through introducing In-doped TiO2 film at conducting glass and mesoporous TiO2 interface as an efficient compact layer. Electrochimica Acta, 2014, 129, 276-282.	2.6	24
113	Core–Shell Supramolecular Gelatin Nanoparticles for Adaptive and "On-Demand―Antibiotic Delivery. ACS Nano, 2014, 8, 4975-4983.	7.3	244
114	Low Dielectric Loss and Good Dielectric Thermal Stability of <i>x</i> <scp><scp>Nd</scp></scp>	ub 1.1 9/2 <td>ub9)<scp><s< td=""></s<></scp></td>	ub 9) <scp><s< td=""></s<></scp>
115	Gelatin–mesoporous silica nanoparticles as matrix metalloproteinases-degradable drug delivery systems in vivo. Microporous and Mesoporous Materials, 2013, 182, 165-172.	2.2	88
116	Polymer Nanofiberâ€Embedded Microchips for Detection, Isolation, and Molecular Analysis of Single Circulating Melanoma Cells. Angewandte Chemie - International Edition, 2013, 52, 3379-3383.	7.2	194
117	Magnetoâ€Controllable Capture and Release of Cancer Cells by Using a Micropillar Device Decorated with Graphite Oxideâ€Coated Magnetic Nanoparticles. Small, 2013, 9, 3895-3901.	5.2	87
118	Hierarchically porous hybrids of polyaniline nanoparticles anchored on reduced graphene oxide sheets as counter electrodes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 2762.	5 . 2	64
119	Biocompatible TiO2 nanoparticle-based cell immunoassay for circulating tumor cells capture and identification from cancer patients. Biomedical Microdevices, 2013, 15, 617-626.	1.4	66
120	Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluidics and Nanofluidics, 2012, 13, 761-767.	1.0	51
121	Detection of bacteria with organic electrochemical transistors. Journal of Materials Chemistry, 2012, 22, 22072.	6.7	118
122	Electrospun TiO ₂ Nanofiberâ€Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients. Advanced Materials, 2012, 24, 2756-2760.	11.1	315
123	Assays: Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients (Adv. Mater. 20/2012). Advanced Materials, 2012, 24, 2755-2755.	11.1	3
124	Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes. Journal of Materials Chemistry, 2011, 21, 13380.	6.7	34
125	A novel method for generation of amphiphilic PDMS particles by selective modification. Microfluidics and Nanofluidics, 2011, 10, 453-458.	1.0	11
126	Controllable fission of droplets and bubbles by pneumatic valve. Microfluidics and Nanofluidics, 2011, 10, 1343-1349.	1.0	8

#	Article	IF	CITATIONS
127	Valve-based microfluidic device for droplet on-demand operation and static assay. Applied Physics Letters, 2010, 97, .	1.5	47
128	The dielectric and tunable properties of Mn doped (Ba0.6Sr0.4)0.925K0.075TiO3 thin films fabricated by sol-gel method. Journal of Applied Physics, 2009, 105, 034104.	1.1	3
129	Comprehensive investigation of structural, electrical, and optical properties for ZnO:Al films deposited at different substrate temperature and oxygen ambient. Journal of Applied Physics, 2008, 103, .	1.1	52
130	Controlled-Release of Materials in Calcium Alginate Microbeads Prepared by Microfluidic Device. , 2007, , .		0
131	Manipulation of Droplets in Micro-Channel Through Magnetic Field. , 2007, , .		0
132	Response of Superparamagnetic Beads and Orientation of Magnetotactic Bacteria in an Integrated Microfluidic Chip., 2007,,.		0
133	Energy harvesting with piezoelectric drum transducer. Applied Physics Letters, 2007, 90, 113506.	1.5	67
134	The Observation of Bacteria and Yeast through Microfluidic Devices., 2007,,.		0
135	A Smart Electrowetting Device Based on PDMS and Glass for Manipulating Cells in Droplet. , 2007, , .		0
136	Injection Angle Dependence in Flow Focusing Based Droplet Formation., 2007,,.		4
137	Properties of multiple gaps microstrip filter with fractal metallic patterns. Microwave and Optical Technology Letters, 2007, 49, 2726-2728.	0.9	2
138	Droplet-based synthetic method using microflow focusing and droplet fusion. Microfluidics and Nanofluidics, 2007, 3, 239-243.	1.0	76
139	A/B Site Modified CaTiO3 Dielectric Ceramics for Microwave Application. Journal of the American Ceramic Society, 2006, 89, 1153-1155.	1.9	50
140	The sandwich structure with fractal patterns for microstrip lines. Microwave and Optical Technology Letters, 2006, 48, 1714-1717.	0.9	1
141	FINITE ELEMENT ANALYSIS OF UNDERWATER CYMBAL TRANSDUCERS WITH LARGE DISPLACEMENT AND FAST RESPONSE TIME. Integrated Ferroelectrics, 2006, 78, 103-111.	0.3	2
142	Efficient Electron Transport Scaffold Made up of Submicron TiO ₂ Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	13