
Dejun Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4734638/publications.pdf Version: 2024-02-01

Ο ΓΙΙΙΝ Η ΛΝ

#	Article	IF	CITATIONS
1	Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. Theoretical and Applied Genetics, 2022, 135, 351-365.	3.6	12
2	Combined linkage and association mapping reveals two major QTL for stripe rust adult plant resistance in Shaanmai 155 and their haplotype variation in common wheat germplasm. Crop Journal, 2022, 10, 783-792.	5.2	5
3	Genome-Wide Association Study on Root System Architecture and Identification of Candidate Genes in Wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 2022, 23, 1843.	4.1	11
4	A genome-wide association study revealed the genetic variation and candidate genes for grain copper content in bread wheat (<i>Triticum aestivum</i> L.). Food and Function, 2022, 13, 5177-5188.	4.6	6
5	CRISPR-Cas12a-Based Diagnostics of Wheat Fungal Diseases. Journal of Agricultural and Food Chemistry, 2022, 70, 7240-7247.	5.2	19
6	Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9. Theoretical and Applied Genetics, 2022, 135, 2501-2513.	3.6	11
7	A largeâ€scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. Plant Biotechnology Journal, 2021, 19, 177-191.	8.3	54
8	Genome-Wide Wheat 55K SNP-Based Mapping of Stripe Rust Resistance Loci in Wheat Cultivar Shaannong 33 and Their Alleles Frequencies in Current Chinese Wheat Cultivars and Breeding Lines. Plant Disease, 2021, 105, 1048-1056.	1.4	14
9	Refined mapping of stripe rust resistance gene YrP10090 within a desirable haplotype for wheat improvement on chromosome 6A. Theoretical and Applied Genetics, 2021, 134, 2005-2021.	3.6	9
10	Wheat-root associated prokaryotic community: interplay between plant selection and location. Plant and Soil, 2021, 464, 183.	3.7	10
11	Utilization of a Wheat50K SNP Microarray-Derived High-Density Genetic Map for QTL Mapping of Plant Height and Grain Traits in Wheat. Plants, 2021, 10, 1167.	3.5	13
12	The assembly of wheat-associated fungal community differs across growth stages. Applied Microbiology and Biotechnology, 2021, 105, 7427-7438.	3.6	8
13	A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat Population. Remote Sensing, 2021, 13, 5173.	4.0	11
14	The improved assembly of 7DL chromosome provides insight into the structure and evolution of bread wheat. Plant Biotechnology Journal, 2020, 18, 732-742.	8.3	6
15	Systematic study of the stress-responsive Rboh gene family in Nicotiana tabacum: Genome-wide identification, evolution and role in disease resistance. Genomics, 2020, 112, 1404-1418.	2.9	25
16	Stripe rust resistance genes in a set of Ethiopian bread wheat cultivars and breeding lines. Euphytica, 2020, 216, 1.	1.2	9
17	Genome-Wide Association Study and Gene Specific Markers Identified 51 Genes or QTL for Resistance to Stripe Rust in U.S. Winter Wheat Cultivars and Breeding Lines. Frontiers in Plant Science, 2020, 11, 998.	3.6	33
18	Wheat Stripe Rust Grading by Deep Learning With Attention Mechanism and Images From Mobile Devices. Frontiers in Plant Science, 2020, 11, 558126.	3.6	62

Dejun Han

#	Article	IF	CITATIONS
19	A comparison of factorâ€analytic and equal diagonal factorâ€analytic models in multiâ€location trials analyses. Agronomy Journal, 2020, 112, 2722-2733.	1.8	0
20	Analyzing the performance of corn in China using a factorâ€analytic varianceâ€covariance structure with multiple factors. Crop Science, 2020, 60, 190-201.	1.8	4
21	Association Analysis Identifies New Loci for Resistance to Chinese <i>Yr26</i> -Virulent Races of the Stripe Rust Pathogen in a Diverse Panel of Wheat Germplasm. Plant Disease, 2020, 104, 1751-1762.	1.4	23
22	Identification of New Sources of Resistance to Crown Rot and Fusarium Head Blight in Wheat. Plant Disease, 2020, 104, 1979-1985.	1.4	22
23	Genome-Scale Analysis of Homologous Genes among Subgenomes of Bread Wheat (Triticum aestivum) Tj ETQq1	1 0 78431 4.1	.4rgBT /Ov
24	Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop Journal, 2020, 8, 1011-1024.	5.2	36
25	Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biology, 2019, 20, 136.	8.8	148
26	Genome-Wide Linkage Mapping Reveals Stripe Rust Resistance in Common Wheat (Triticum aestivum) Xinong1376. Plant Disease, 2019, 103, 2742-2750.	1.4	27
27	Combining genome-wide linkage mapping with extreme pool genotyping for stripe rust resistance gene identification in bread wheat. Molecular Breeding, 2019, 39, 1.	2.1	2
28	Identification of sources of resistance in geographically diverse wheat accessions to stripe rust pathogen in China. Crop Protection, 2019, 122, 1-8.	2.1	10
29	Stripe rust resistance to a burgeoning Puccinia striiformis f. sp. tritici race CYR34 in current Chinese wheat cultivars for breeding and research. Euphytica, 2019, 215, 1.	1.2	16
30	Genome-wide mapping of adult plant stripe rust resistance in wheat cultivar Toni. Theoretical and Applied Genetics, 2019, 132, 1693-1704.	3.6	9
31	A major QTL co-localized on chromosome 6BL and its epistatic interaction for enhanced wheat stripe rust resistance. Theoretical and Applied Genetics, 2019, 132, 1409-1424.	3.6	17
32	Genetic architecture of wheat stripe rust resistance revealed by combining QTL mapping using SNP-based genetic maps and bulked segregant analysis. Theoretical and Applied Genetics, 2019, 132, 443-455.	3.6	31
33	Utilization of the Genomewide Wheat 55K SNP Array for Genetic Analysis of Stripe Rust Resistance in Common Wheat Line P9936. Phytopathology, 2019, 109, 819-827.	2.2	41
34	Genome-wide Mapping for Stripe Rust Resistance Loci in Common Wheat Cultivar Qinnong 142. Plant Disease, 2019, 103, 439-447.	1.4	38
35	Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review. Crop Journal, 2018, 6, 321-329.	5.2	62
36	SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theoretical and Applied Genetics, 2018, 131, 1481-1496.	3.6	61

Dejun Han

#	Article	IF	CITATIONS
37	Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theoretical and Applied Genetics, 2018, 131, 43-58.	3.6	80
38	Combining Single Nucleotide Polymorphism Genotyping Array with Bulked Segregant Analysis to Map a Gene Controlling Adult Plant Resistance to Stripe Rust in Wheat Line 03031-1-5 H62. Phytopathology, 2018, 108, 103-113.	2.2	27
39	Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. Theoretical and Applied Genetics, 2018, 131, 1777-1792.	3.6	29
40	Rapid identification of a major effect QTL conferring adult plant resistance to stripe rust in wheat cultivar Yaco"S― Euphytica, 2017, 213, 1.	1.2	7
41	Development and Validation of KASP-SNP Markers for QTL Underlying Resistance to Stripe Rust in Common Wheat Cultivar P10057. Plant Disease, 2017, 101, 2079-2087.	1.4	46
42	Evaluation of resistance of current wheat cultivars and breeding lines to stripe rust from three Gorges reservoir area. Journal of General Plant Pathology, 2017, 83, 283-290.	1.0	3
43	Saturation Mapping of a Major Effect QTL for Stripe Rust Resistance on Wheat Chromosome 2B in Cultivar Napo 63 Using SNP Genotyping Arrays. Frontiers in Plant Science, 2017, 8, 653.	3.6	34
44	Construction and Characterization of a Bacterial Artificial Chromosome Library for the Hexaploid Wheat Line 92R137. BioMed Research International, 2014, 2014, 1-9.	1.9	3