
James B Konopka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/473462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma Membrane Phosphatidylinositol 4-Phosphate Is Necessary for Virulence of Candida albicans. MBio, 2022, , e0036622.	4.1	0
2	Comparison of Experimental Approaches Used to Determine the Structure and Function of the Class D G Protein-Coupled Yeast α-Factor Receptor. Biomolecules, 2022, 12, 761.	4.0	2
3	Microdomain Protein Nce102 Is a Local Sensor of Plasma Membrane Sphingolipid Balance. Microbiology Spectrum, 2022, 10, .	3.0	9
4	Receptors Pheromone Receptors (Yeast). , 2021, , 236-241.		1
5	Differential Roles of a Family of Flavodoxin-Like Proteins That Promote Resistance to Quinone-Mediated Oxidative Stress in Candida albicans. Infection and Immunity, 2021, 89, .	2.2	5
6	A Conserved Machinery Underlies the Synthesis of a Chitosan Layer in the <i>Candida</i> Chlamydospore Cell Wall. MSphere, 2021, 6, .	2.9	9
7	Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans. PLoS Pathogens, 2021, 17, e1009861.	4.7	10
8	The Sur7 cytoplasmic C terminus regulates morphogenesis and stress responses in Candida albicans. Molecular Microbiology, 2021, 116, 1201-1215.	2.5	6
9	N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi. Journal of Fungi (Basel, Switzerland), 2020, 6, 8.	3.5	19
10	Plasma Membrane MCC/Eisosome Domains Promote Stress Resistance in Fungi. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	30
11	Fungal Pathogens: Shape-Shifting Invaders. Trends in Microbiology, 2020, 28, 922-933.	7.7	27
12	Candida albicans Agar Invasion Assays. Bio-protocol, 2020, 10, e3730.	0.4	6
13	Plasma membrane architecture protects Candida albicans from killing by copper. PLoS Genetics, 2019, 15, e1007911.	3.5	37
14	Candida albicans <i>rvs161</i> Δ and <i>rvs167</i> Δ Endocytosis Mutants Are Defective in Invasion into the Oral Cavity. MBio, 2019, 10, .	4.1	6
15	Pathogenic Effects of IFIT2 and Interferon-β during Fatal Systemic Candida albicans Infection. MBio, 2018, 9, .	4.1	11
16	Genetic Analysis of <i>NDT80</i> Family Transcription Factors in <i>Candida albicans</i> Using New CRISPR-Cas9 Approaches. MSphere, 2018, 3, .	2.9	39
17	Phagocytes from Mice Lacking the Sts Phosphatases Have an Enhanced Antifungal Response to Candida albicans. MBio, 2018, 9, .	4.1	27
18	cAMPâ€independent signal pathways stimulate hyphal morphogenesis in <i>Candida albicans</i> . Molecular Microbiology, 2017, 103, 764-779.	2.5	36

James B Konopka

#	Article	IF	CITATIONS
19	An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3, 17073.	9.3	72
20	<i>N</i> -Acetylglucosamine Metabolism Promotes Survival of Candida albicans in the Phagosome. MSphere, 2017, 2, .	2.9	29
21	MCC/Eisosomes Regulate Cell Wall Synthesis and Stress Responses in Fungi. Journal of Fungi (Basel,) Tj ETQq1 1	0.784314	rggT /Overlo
22	Modulating Host Signaling Pathways to Promote Resistance to Infection by Candida albicans. Frontiers in Cellular and Infection Microbiology, 2017, 7, 481.	3.9	24
23	Regulation of Hyphal Growth and N-Acetylglucosamine Catabolism by Two Transcription Factors in <i>Candida albicans</i> . Genetics, 2017, 206, 299-314.	2.9	33
24	Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in <i>Candida albicans</i> . Molecular Biology of the Cell, 2016, 27, 1663-1675.	2.1	32
25	Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans. Journal of Microbiology, 2016, 54, 178-191.	2.8	29
26	Raft-Like Membrane Domains in Pathogenic Microorganisms. Current Topics in Membranes, 2015, 75, 233-268.	0.9	46
27	Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. MBio, 2015, 6, e00647.	4.1	124
28	Hyphal growth in <i>Candida albicans</i> does not require induction of hyphal-specific gene expression. Molecular Biology of the Cell, 2015, 26, 1174-1187.	2.1	37
29	The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans. Fungal Genetics and Biology, 2015, 81, 150-159.	2.1	20
30	Protection from Systemic Candida albicans Infection by Inactivation of the Sts Phosphatases. Infection and Immunity, 2015, 83, 637-645.	2.2	35
31	N-acetylglucosamine Regulates Virulence Properties in Microbial Pathogens. PLoS Pathogens, 2015, 11, e1004947.	4.7	36
32	Flavodoxin-Like Proteins Protect Candida albicans from Oxidative Stress and Promote Virulence. PLoS Pathogens, 2015, 11, e1005147.	4.7	46
33	Fungal Membrane Organization: The Eisosome Concept. Annual Review of Microbiology, 2014, 68, 377-393.	7.3	118
34	Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data. Molecular Biology of the Cell, 2014, 25, 222-233.	2.1	37
35	Clathrin- and Arp2/3-Independent Endocytosis in the Fungal Pathogen Candida albicans. MBio, 2013, 4, e00476-13.	4.1	39
36	The MARVEL Domain Protein Nce102 Regulates Actin Organization and Invasive Growth of Candida albicans. MBio, 2013, 4, e00723-13.	4.1	34

James B Κονορκά

#	Article	IF	CITATIONS
37	N-acetylglucosamine (GlcNAc) Triggers a Rapid, Temperature-Responsive Morphogenetic Program in Thermally Dimorphic Fungi. PLoS Genetics, 2013, 9, e1003799.	3.5	58
38	A Candida albicans Temperature-Sensitivecdc12-6Mutant Identifies Roles for Septins in Selection of Sites of Germ Tube Formation and Hyphal Morphogenesis. Eukaryotic Cell, 2012, 11, 1210-1218.	3.4	28
39	Novel roles for GlcNAc in cell signaling. Communicative and Integrative Biology, 2012, 5, 156-159.	1.4	41
40	Sur7 Promotes Plasma Membrane Organization and Is Needed for Resistance to Stressful Conditions and to the Invasive Growth and Virulence of Candida albicans. MBio, 2012, 3, .	4.1	63
41	N-Acetylglucosamine Functions in Cell Signaling. Scientifica, 2012, 2012, 1-15.	1.7	138
42	The Candida albicans Sur7 Protein Is Needed for Proper Synthesis of the Fibrillar Component of the Cell Wall That Confers Strength. Eukaryotic Cell, 2011, 10, 72-80.	3.4	50
43	N-Acetylglucosamine (GlcNAc) Induction of Hyphal Morphogenesis and Transcriptional Responses in Candida albicans Are Not Dependent on Its Metabolism. Journal of Biological Chemistry, 2011, 286, 28671-28680.	3.4	74
44	Membrane Compartment Occupied by Can1 (MCC) and Eisosome Subdomains of the Fungal Plasma Membrane. Membranes, 2011, 1, 394-411.	3.0	35
45	Identification of GIG1 , a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z. Eukaryotic Cell, 2010, 9, 1476-1483.	3.4	43
46	Recognition of Yeast by Murine Macrophages Requires Mannan but Not Glucan. Eukaryotic Cell, 2010, 9, 1776-1787.	3.4	82
47	A Photostable Green Fluorescent Protein Variant for Analysis of Protein Localization in <i>Candida albicans</i> . Eukaryotic Cell, 2010, 9, 224-226.	3.4	59
48	Strategies for Isolating Constitutively Active and Dominant-Negative Pheromone Receptor Mutants in Yeast. Methods in Enzymology, 2010, 485, 329-348.	1.0	3
49	The Sur7 protein resides in punctate membrane subdomains and mediates spatial regulation of cell wall synthesis in <i>Candida albicans</i> . Communicative and Integrative Biology, 2009, 2, 76-77.	1.4	24
50	BAR Domain Proteins Rvs161 and Rvs167 Contribute to <i>Candida albicans</i> Endocytosis, Morphogenesis, and Virulence. Infection and Immunity, 2009, 77, 4150-4160.	2.2	49
51	Identification of Amino Acids at Two Dimer Interface Regions of the α-Factor Receptor (Ste2). Biochemistry, 2009, 48, 7132-7139.	2.5	33
52	Scanning mutagenesis of regions in the Gα protein Gpa1 that are predicted to interact with yeast mating pheromone receptors. FEMS Yeast Research, 2008, 8, 71-80.	2.3	3
53	The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in <i>Candida albicans</i> . Molecular Biology of the Cell, 2008, 19, 5214-5225.	2.1	77
54	<i>Saccharomyces cerevisiae</i> Afr1 Protein Is a Protein Phosphatase 1/Glc7-Targeting Subunit That Regulates the Septin Cytoskeleton during Mating. Eukaryotic Cell, 2008, 7, 1246-1255.	3.4	16

JAMES B KONOPKA

#	Article	IF	CITATIONS
55	Identification of anN-Acetylglucosamine Transporter That Mediates Hyphal Induction inCandida albicans. Molecular Biology of the Cell, 2007, 18, 965-975.	2.1	124
56	Sterol-Rich Plasma Membrane Domains in Fungi. Eukaryotic Cell, 2007, 6, 755-763.	3.4	139
57	Functional expression of mammalian receptors and membrane channels in different cells. Journal of Structural Biology, 2007, 159, 179-193.	2.8	37
58	Accessibility of Cysteine Residues Substituted into the Cytoplasmic Regions of the α-Factor Receptor Identifies the Intracellular Residues That Are Available for G Protein Interactionâ€. Biochemistry, 2006, 45, 15310-15317.	2.5	20
59	DEP-Domain-Mediated Regulation of GPCR Signaling Responses. Cell, 2006, 126, 1079-1093.	28.9	166
60	Cell Cycle Dynamics and Quorum Sensing in Candida albicans Chlamydospores Are Distinct from Budding and Hyphal Growth. Eukaryotic Cell, 2005, 4, 1191-1202.	3.4	55
61	Septin Function in Yeast Model Systems and Pathogenic Fungi. Eukaryotic Cell, 2005, 4, 1503-1512.	3.4	104
62	Identification of Residues that Contribute to Receptor Activation through the Analysis of Compensatory Mutations in the G Protein-Coupled α-Factor Receptor. Biochemistry, 2005, 44, 1278-1287.	2.5	10
63	Comparison of Class A and D G Protein-Coupled Receptors:  Common Features in Structure and Activation. Biochemistry, 2005, 44, 8959-8975.	2.5	80
64	Successful expression of a functional yeast G-protein-coupled receptor (Ste2) in mammalian cells. Biochemical and Biophysical Research Communications, 2005, 329, 281-287.	2.1	20
65	Pheromone Receptors (Yeast). , 2004, , 256-261.		1
66	Lipid Raft Polarization Contributes to Hyphal Growth in Candida albicans. Eukaryotic Cell, 2004, 3, 675-684.	3.4	208
67	A Microdomain Formed by the Extracellular Ends of the Transmembrane Domains Promotes Activation of the G Protein-Coupled α-Factor Receptor. Molecular and Cellular Biology, 2004, 24, 2041-2051.	2.3	28
68	SUMO Modification of Septin-interacting Proteins in Candida albicans. Journal of Biological Chemistry, 2004, 279, 40861-40867.	3.4	26
69	Aromatic Residues at the Extracellular Ends of Transmembrane Domains 5 and 6 Promote Ligand Activation of the G Protein-Coupled α-Factor Receptorâ€. Biochemistry, 2003, 42, 293-301.	2.5	46
70	Candida albicans Septin Mutants Are Defective for Invasive Growth and Virulence. Infection and Immunity, 2003, 71, 4045-4051.	2.2	85
71	Septin Function inCandida albicansMorphogenesis. Molecular Biology of the Cell, 2002, 13, 2732-2746.	2.1	166
72	lqg1p links spatial and secretion landmarks to polarity and cytokinesis. Journal of Cell Biology, 2002, 159, 601-611.	5.2	50

JAMES B ΚΟΝΟΡΚΑ

#	Article	IF	CITATIONS
73	Functional Assays for Mammalian G-Protein-Coupled Receptors in Yeast. Methods in Enzymology, 2002, 344, 92-111.	1.0	16
74	The Cytoplasmic End of Transmembrane Domain 3 Regulates the Activity of the <i>Saccharomyces cerevisiae</i> G-Protein-Coupled α-Factor Receptor. Genetics, 2002, 160, 429-443.	2.9	30
75	Mutational Analysis of the Role of N-Glycosylation in α-Factor Receptor Functionâ€. Biochemistry, 2001, 40, 9685-9694.	2.5	39
76	Constitutive activation of theSaccharomyces cerevisiae transcriptional regulator Ste12p by mutations at the amino-terminus. Yeast, 2000, 16, 1365-1375.	1.7	13
77	The C Terminus of the Saccharomyces cerevisiae α-Factor Receptor Contributes to the Formation of Preactivation Complexes with Its Cognate G Protein. Molecular and Cellular Biology, 2000, 20, 5321-5329.	2.3	65
78	Interaction between Transmembrane Domains Five and Six of the α-Factor Receptor. Journal of Biological Chemistry, 2000, 275, 26492-26499.	3.4	41
79	Point Mutations Identify a Conserved Region of the Saccharomyces cerevisiae AFR1 Gene That Is Essential for Both the Pheromone Signaling and Morphogenesis Functions. Genetics, 2000, 155, 43-55.	2.9	15
80	Visualization of Receptor-mediated Endocytosis in Yeast. Molecular Biology of the Cell, 1999, 10, 799-817.	2.1	72
81	Combining mutations in the incoming and outgoing pheromone signal pathways causes a synergistic mating defect inSaccharomyces cerevisiae. , 1999, 15, 765-780.		8
82	Identification of a Polar Region in Transmembrane Domain 6 That Regulates the Function of the G Protein-Coupled α-Factor Receptor. Molecular and Cellular Biology, 1998, 18, 7205-7215.	2.3	50
83	Dominant-Negative Mutations in the G-Protein-Coupled α-Factor Receptor Map to the Extracellular Ends of the Transmembrane Segments. Molecular and Cellular Biology, 1998, 18, 5981-5991.	2.3	59
84	Afr1p Regulates the Saccharomyces cerevisiae α-Factor Receptor by a Mechanism That Is Distinct From Receptor Phosphorylation and Endocytosis. Genetics, 1998, 148, 625-635.	2.9	15
85	Two New S-Phase-Specific Genes fromSaccharomyces cerevisiae. Yeast, 1997, 13, 1029-1042.	1.7	208
86	Two New S-Phase-Specific Genes from Saccharomyces cerevisiae. , 1997, 13, 1029.		1
87	Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6764-6769.	7.1	111
88	Signal Transduction: Prokaryotic and Simple Eukaryotic Systems.Janet Kurjan , Barry L. Taylor. Quarterly Review of Biology, 1995, 70, 338-339.	0.1	0
89	The pheromone signal pathway inSaccharomyces cerevisiae. Antonie Van Leeuwenhoek, 1992, 62, 95-108.	1.7	24
90	The pheromone signal pathway in Saccharomyces cerevisiae. , 1992, , 95-108.		11

James B Konopka

#	Article	IF	CITATIONS
91	S. cerevisiae α pheromone receptors activate a novel signal transduction pathway for mating partner discrimination. Cell, 1991, 67, 389-402.	28.9	137
92	Conjugation in Saccharomyces cerevisiae. Annual Review of Cell Biology, 1988, 4, 429-455.	26.1	263
93	The C-terminus of the S. cerevisiae α-pheromone receptor mediates an adaptive response to pheromone. Cell, 1988, 54, 609-620.	28.9	237
94	Expression of a translocated c-abl gene in hybrids of mouse fibroblasts and chronic myelogenous leukaemia cells. Nature, 1986, 319, 331-333.	27.8	26
95	Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1810-1814.	7.1	238
96	Activation of the abl oncogene in murine and human leukemias. Biochimica Et Biophysica Acta: Reviews on Cancer, 1985, 823, 1-17.	7.4	41
97	An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 1984, 37, 1035-1042	28.9	884