Rheure Alves-Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4734593/publications.pdf

Version: 2024-02-01

43 papers

2,086 citations

331642 21 h-index 289230 40 g-index

43 all docs 43 docs citations

43 times ranked

2998 citing authors

#	Article	IF	CITATIONS
1	Vascular smooth muscle contraction in hypertension. Cardiovascular Research, 2018, 114, 529-539.	3.8	393
2	Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications. Canadian Journal of Cardiology, 2016, 32, 659-668.	1.7	298
3	Oxidative Stress and Hypertension. Circulation Research, 2021, 128, 993-1020.	4.5	188
4	Oxidative Stress: A Unifying Paradigm in Hypertension. Canadian Journal of Cardiology, 2020, 36, 659-670.	1.7	138
5	Downregulation of Nuclear Factor Erythroid 2–Related Factor and Associated Antioxidant Genes Contributes to Redox-Sensitive Vascular Dysfunction in Hypertension. Hypertension, 2015, 66, 1240-1250.	2.7	109
6	Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications. Clinical Science, 2017, 131, 1405-1418.	4.3	91
7	NLRP3 Inflammasome Mediates Aldosterone-Induced Vascular Damage. Circulation, 2016, 134, 1866-1880.	1.6	87
8	VEGFR (Vascular Endothelial Growth Factor Receptor) Inhibition Induces Cardiovascular Damage via Redox-Sensitive Processes. Hypertension, 2018, 71, 638-647.	2.7	73
9	Testosterone induces apoptosis in vascular smooth muscle cells via extrinsic apoptotic pathway with mitochondria-generated reactive oxygen species involvement. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1485-H1494.	3.2	71
10	NADPH Oxidase 5 Is a Pro ontractile Nox Isoform and a Point of Crossâ€Talk for Calcium and Redox Signalingâ€Implications in Vascular Function. Journal of the American Heart Association, 2018, 7, .	3.7	51
11	Testosterone and Vascular Function in Aging. Frontiers in Physiology, 2012, 3, 89.	2.8	50
12	Vascular dysfunction and fibrosis in stroke-prone spontaneously hypertensive rats: The aldosterone-mineralocorticoid receptor-Nox1 axis. Life Sciences, 2017, 179, 110-119.	4.3	46
13	Mineralocorticoid receptor blockade prevents vascular remodelling in a rodent model of typeÂ2 diabetes mellitus. Clinical Science, 2015, 129, 533-545.	4.3	36
14	Crosstalk Between Vascular Redox and Calcium Signaling in Hypertension Involves TRPM2 (Transient) Tj ETQq0 (0 O _. rgBT /0	Overlock 10 Tf
15	Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling. Frontiers in Physiology, 2015, 6, 269.	2.8	31
16	ER stress and Rho kinase activation underlie the vasculopathy of CADASIL. JCI Insight, 2019, 4, .	5.0	31
17	Internal Pudental Artery Dysfunction in Diabetes Mellitus Is Mediated by NOX1-Derived ROS-, Nrf2-, and Rho Kinase–Dependent Mechanisms. Hypertension, 2016, 68, 1056-1064.	2.7	30
18	Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1851-H1860.	3.2	30

#	Article	IF	CITATIONS
19	Antioxidant and antihypertensive responses to oral nitrite involves activation of the Nrf2 pathway. Free Radical Biology and Medicine, 2019, 141, 261-268.	2.9	29
20	Central role of c-Src in NOX5- mediated redox signalling in vascular smooth muscle cells in human hypertension. Cardiovascular Research, 2022, 118, 1359-1373.	3.8	26
21	Functional and structural changes in internal pudendal arteries underlie erectile dysfunction induced by androgen deprivation. Asian Journal of Andrology, 2017, 19, 526.	1.6	23
22	Linking the beneficial effects of current therapeutic approaches in diabetes to the vascular endothelin system. Life Sciences, 2014, 118, 129-135.	4.3	20
23	Isolation and Culture of Vascular Smooth Muscle Cells from Small and Large Vessels. Methods in Molecular Biology, 2017, 1527, 349-354.	0.9	19
24	Upregulation of Nrf2 and Decreased Redox Signaling Contribute to Renoprotective Effects of Chemerin Receptor Blockade in Diabetic Mice. International Journal of Molecular Sciences, 2018, 19, 2454.	4.1	19
25	Lysophosphatidylcholine induces oxidative stress in human endothelial cells via NOX5 activation – implications in atherosclerosis. Clinical Science, 2021, 135, 1845-1858.	4.3	18
26	Angiotensin-II activates vascular inflammasome and induces vascular damage. Vascular Pharmacology, 2021, 139, 106881.	2.1	17
27	Vascular dysfunction and increased cardiovascular risk in hypospadias. European Heart Journal, 2022, 43, 1832-1845.	2.2	16
28	Epidermal growth factor signaling through transient receptor potential melastatin 7 cation channel regulates vascular smooth muscle cell function. Clinical Science, 2020, 134, 2019-2035.	4.3	15
29	Erectile dysfunction in heart failure rats is associated with increased neurogenic contractions in cavernous tissue and internal pudendal artery. Life Sciences, 2016, 145, 9-18.	4.3	14
30	Peripheral arteriopathy caused by Notch3 gain-of-function mutation involves ER and oxidative stress and blunting of NO/sGC/cGMP pathway. Clinical Science, 2021, 135, 753-773.	4.3	12
31	Isolation and Culture of Endothelial Cells from Large Vessels. Methods in Molecular Biology, 2017, 1527, 345-348.	0.9	11
32	Glycosylation with $\langle i \rangle O \langle i \rangle$ -linked $\hat{l}^2 \langle i \rangle N \langle i \rangle$ -acetylglucosamine induces vascular dysfunction via production of superoxide anion/reactive oxygen species. Canadian Journal of Physiology and Pharmacology, 2018, 96, 232-240.	1.4	11
33	Off-Target Vascular Effects of Cholesteryl Ester Transfer Protein Inhibitors Involve Redox-Sensitive and Signal Transducer and Activator of Transcription 3-Dependent Pathways. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 415-422.	2.5	9
34	25Years of endothelin research: the next generation. Life Sciences, 2014, 118, 77-86.	4.3	8
35	Selective Inhibition of the C-Domain of ACE (Angiotensin-Converting Enzyme) Combined With Inhibition of NEP (Neprilysin): A Potential New Therapy for Hypertension. Hypertension, 2021, 78, 604-616.	2.7	7
36	PARP-1 (Poly[ADP-Ribose] Polymerase-1). Hypertension, 2018, 72, 1087-1089.	2.7	6

#	Article	IF	Citations
37	Muscarinic Receptor Type-3 in Hypertension and Cholinergic-Adrenergic Crosstalk: Genetic Insights and Potential for New Antihypertensive Targets. Canadian Journal of Cardiology, 2019, 35, 555-557.	1.7	6
38	Progenitor Cells, Bone Marrow–Derived Fibrocytes and Endothelial-to-Mesenchymal Transition. Hypertension, 2016, 67, 272-274.	2.7	5
39	Osteoprotegerin regulates vascular function through syndecan-1 and NADPH oxidase-derived reactive oxygen species. Clinical Science, 2021, 135, 2429-2444.	4.3	4
40	Testosterone Contributes to Vascular Dysfunction in Young Mice Fed a High Fat Diet by Promoting Nuclear Factor E2–Related Factor 2 Downregulation and Oxidative Stress. Frontiers in Physiology, 2022, 13, 837603.	2.8	3
41	Cell Biology of Vessels. , 2019, , 23-30.		O
42	Arterial Hypertension. , 2022, , .		0
43	The vascular phenotype in hypertension. , 2022, , 327-342.		0