
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/47344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467, 43-51.	13.7	2,656
2	Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9971-9975.	3.3	1,859
3	Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the United States of America, 2017, 114, 9326-9331.	3.3	1,708
4	Greening of the Earth and its drivers. Nature Climate Change, 2016, 6, 791-795.	8.1	1,675
5	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
6	Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 2015, 524, 335-338.	13.7	1,185
7	Surface Urban Heat Island Across 419 Global Big Cities. Environmental Science & Technology, 2012, 46, 696-703.	4.6	864
8	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	3.7	824
9	Declining global warming effects on the phenology of spring leaf unfolding. Nature, 2015, 526, 104-107.	13.7	637
10	Detection and attribution of vegetation greening trend in China over the last 30Âyears. Global Change Biology, 2015, 21, 1601-1609.	4.2	597
11	Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2915-2919.	3.3	501
12	Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501, 88-92.	13.7	482
13	Global carbon budget 2014. Earth System Science Data, 2015, 7, 47-85.	3.7	463
14	Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.	5.8	414
15	Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015, 6, 6911.	5.8	384
16	Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7, 432-436.	8.1	323
17	Air temperature optima of vegetation productivity across global biomes. Nature Ecology and Evolution, 2019, 3, 772-779.	3.4	316
18	Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3882-3887.	3.3	296

#	Article	IF	CITATIONS
19	Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 2018, 4, eaar4182.	4.7	287
20	A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506, 212-215.	13.7	284
21	Recent change of vegetation growth trend in China. Environmental Research Letters, 2011, 6, 044027.	2.2	255
22	Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochemical Cycles, 2015, 29, 775-792.	1.9	241
23	Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology and Biochemistry, 2009, 41, 1008-1014.	4.2	223
24	Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 2018, 8, 640-646.	8.1	219
25	The contribution of China's emissions to global climate forcing. Nature, 2016, 531, 357-361.	13.7	214
26	The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design. Geoscientific Model Development, 2013, 6, 2121-2133.	1.3	212
27	Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth System Science Data, 2018, 10, 219-234.	3.7	193
28	Extension of the growing season increases vegetation exposure to frost. Nature Communications, 2018, 9, 426.	5.8	190
29	Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 2017, 7, 359-363.	8.1	183
30	Impact of largeâ€scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles, 2014, 28, 585-600.	1.9	181
31	Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 2017, 23, 4854-4872.	4.2	158
32	Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Scientific Reports, 2017, 7, 4765.	1.6	156
33	Deceleration of China's human water use and its key drivers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7702-7711.	3.3	155
34	A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140423.	1.6	149
35	Afforestation neutralizes soil pH. Nature Communications, 2018, 9, 520.	5.8	140
36	Increasingly Important Role of Atmospheric Aridity on Tibetan Alpine Grasslands. Geophysical Research Letters, 2018, 45, 2852-2859.	1.5	136

#	Article	IF	CITATIONS
37	ORCHIDEE-MICT (v8.4.1), aÂland surface model for the high latitudes: model description and validation. Geoscientific Model Development, 2018, 11, 121-163.	1.3	135
38	The impacts of climate extremes on the terrestrial carbon cycle: A review. Science China Earth Sciences, 2019, 62, 1551-1563.	2.3	134
39	Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology and Evolution, 2020, 4, 1075-1083.	3.4	134
40	Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agricultural and Forest Meteorology, 2013, 178-179, 46-55.	1.9	130
41	Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 2017, 12, 094013.	2.2	129
42	Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models. Environmental Research Letters, 2012, 7, 014026.	2.2	126
43	Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environmental Research Letters, 2013, 8, 014008.	2.2	125
44	Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature, 2019, 568, 221-225.	13.7	124
45	A representation of the phosphorus cycle for ORCHIDEE (revisionÂ4520). Geoscientific Model Development, 2017, 10, 3745-3770.	1.3	122
46	Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 2015, 10, 094008.	2.2	119
47	Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles, 2016, 30, 1015-1037.	1.9	116
48	Change in winter snow depth and its impacts on vegetation in China. Global Change Biology, 2010, 16, 3004-3013.	4.2	115
49	Plausible rice yield losses under future climate warming. Nature Plants, 2017, 3, 16202.	4.7	114
50	Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, 2018, 11, 739-743.	5.4	110
51	Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010. Atmospheric Chemistry and Physics, 2016, 16, 14545-14562.	1.9	107
52	Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of a forest-steppe ecotone, north China. Soil Biology and Biochemistry, 2010, 42, 451-458.	4.2	106
53	Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality?. Soil Biology and Biochemistry, 2010, 42, 1728-1734.	4.2	106
54	Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 2021, 12, 118.	5.8	106

#	Article	IF	CITATIONS
55	The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences, 2012, 9, 3571-3586.	1.3	103
56	Future impacts of climate change on inland Ramsar wetlands. Nature Climate Change, 2021, 11, 45-51.	8.1	103
57	Global patterns and climate drivers of waterâ€use efficiency in terrestrial ecosystems deduced from satelliteâ€based datasets and carbon cycle models. Global Ecology and Biogeography, 2016, 25, 311-323.	2.7	102
58	Seasonal responses of terrestrial ecosystem waterâ€use efficiency to climate change. Global Change Biology, 2016, 22, 2165-2177.	4.2	100
59	Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2854-5.	3.3	92
60	The influence of local spring temperature variance on temperature sensitivity of spring phenology. Global Change Biology, 2014, 20, 1473-1480.	4.2	90
61	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	1.9	85
62	Soil moisture and hydrology projections of the permafrost region – a model intercomparison. Cryosphere, 2020, 14, 445-459.	1.5	85
63	A New High-Resolution N ₂ O Emission Inventory for China in 2008. Environmental Science & Technology, 2014, 48, 8538-8547.	4.6	82
64	Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sensing of Environment, 2018, 217, 203-220.	4.6	80
65	Velocity of change in vegetation productivity over northern high latitudes. Nature Ecology and Evolution, 2017, 1, 1649-1654.	3.4	79
66	Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of Environmental Management, 2019, 250, 109403.	3.8	76
67	Revisiting enteric methane emissions from domestic ruminants and their δ13CCH4 source signature. Nature Communications, 2019, 10, 3420.	5.8	75
68	Field warming experiments shed light on the wheat yield response to temperature in China. Nature Communications, 2016, 7, 13530.	5.8	73
69	Seasonally different response of photosynthetic activity to daytime and nightâ€ŧime warming in the Northern Hemisphere. Global Change Biology, 2015, 21, 377-387.	4.2	72
70	Age-Related Modulation of the Nitrogen Resorption Efficiency Response to Growth Requirements and Soil Nitrogen Availability in a Temperate Pine Plantation. Ecosystems, 2016, 19, 698-709.	1.6	71
71	Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Scientific Data, 2020, 7, 313.	2.4	71
72	Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. National Science Review, 2021, 8, nwaa145.	4.6	70

#	Article	IF	CITATIONS
73	Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecology and Biogeography, 2021, 30, 2297-2311.	2.7	64
74	Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6064-6079.	1.2	63
75	Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earth's Future, 2017, 5, 730-749.	2.4	59
76	Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences, 2017, 14, 3051-3066.	1.3	59
77	The effects of teleconnections on carbon fluxes of global terrestrial ecosystems. Geophysical Research Letters, 2017, 44, 3209-3218.	1.5	58
78	Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences, 2017, 14, 5053-5067.	1.3	58
79	Regional trends and drivers of the global methane budget. Global Change Biology, 2022, 28, 182-200.	4.2	56
80	Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink. Nature Communications, 2022, 13, 880.	5.8	55
81	Rapid degradation of permafrost underneath waterbodies in tundra landscapes—Toward a representation of thermokarst in land surface models. Journal of Geophysical Research F: Earth Surface, 2016, 121, 2446-2470.	1.0	54
82	Major forest changes and land cover transitions based on plant functional types derived from the ESA CCI Land Cover product. International Journal of Applied Earth Observation and Geoinformation, 2016, 47, 30-39.	1.4	52
83	Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin. Geoscientific Model Development, 2014, 7, 1115-1136.	1.3	49
84	Single-leaf and canopy photosynthesis of rice11Citation: Sheehy JE, Mitchell PL, Hardy B, editors. 2000. Redesigning rice photosynthesis to increase yield. Proceedings of the Workshop on The Quest to Reduce Hunger: Redesigning Rice Photosynthesis, 30 Nov3 Dec. 1999, Los BaA±os. Philippines. Makati City (Philippines): International Rice Research Institute and Amsterdam (The Netherlands): Elsevier Science	0.5	48
85	B.V. 293 p Studies in Plant Science, 2000, 7, 213-228. Toward "optimal―integration of terrestrial biosphere models. Geophysical Research Letters, 2015, 42, 4418-4428.	1.5	48
86	Benchmarking the seasonal cycle of CO ₂ fluxes simulated by terrestrial ecosystem models. Global Biogeochemical Cycles, 2015, 29, 46-64.	1.9	48
87	Sensitivity of land use change emission estimates to historical land use and land cover mapping. Global Biogeochemical Cycles, 2017, 31, 626-643.	1.9	48
88	On the causes of trends in the seasonal amplitude of atmospheric <scp>CO</scp> ₂ . Global Change Biology, 2018, 24, 608-616.	4.2	48
89	Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 430-446.	1.3	47
90	Evaluating biases in simulated land surface albedo from CMIP5 global climate models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6178-6190.	1.2	46

#	Article	IF	CITATIONS
91	Temporal response of soil organic carbon after grasslandâ€related landâ€use change. Global Change Biology, 2018, 24, 4731-4746.	4.2	44
92	Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences, 2017, 14, 5143-5169.	1.3	43
93	ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO ₂ , water, and energy fluxes on daily to annual scales. Geoscientific Model Development, 2018, 11, 497-519.	1.3	43
94	The role of northern peatlands in the global carbon cycle for the 21st century. Global Ecology and Biogeography, 2020, 29, 956-973.	2.7	43
95	Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. Cryosphere, 2015, 9, 1343-1361.	1.5	41
96	The Effect of Afforestation on Soil Moisture Content in Northeastern China. PLoS ONE, 2016, 11, e0160776.	1.1	41
97	Attribution of seasonal leaf area index trends in the northern latitudes with "optimally―integrated ecosystem models. Global Change Biology, 2017, 23, 4798-4813.	4.2	41
98	Increased lightâ€use efficiency in northern terrestrial ecosystems indicated by CO ₂ and greening observations. Geophysical Research Letters, 2016, 43, 11,339.	1.5	40
99	Summer soil moisture regulated by precipitation frequency in China. Environmental Research Letters, 2009, 4, 044012.	2.2	39
100	Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13104-13108.	3.3	39
101	Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environmental Research Letters, 2017, 12, 064007.	2.2	39
102	Grassland restoration reduces water yield in the headstream region of Yangtze River. Scientific Reports, 2017, 7, 2162.	1.6	39
103	The weakening relationship between Eurasian spring snow cover and Indian summer monsoon rainfall. Science Advances, 2019, 5, eaau8932.	4.7	39
104	The Key Role of Production Efficiency Changes in Livestock Methane Emission Mitigation. AGU Advances, 2021, 2, e2021AV000391.	2.3	39
105	Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere, 2016, 10, 1721-1737.	1.5	38
106	Vegetation Functional Properties Determine Uncertainty of Simulated Ecosystem Productivity: A Traceability Analysis in the East Asian Monsoon Region. Global Biogeochemical Cycles, 2019, 33, 668-689.	1.9	38
107	The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nature Ecology and Evolution, 2018, 2, 640-649.	3.4	37
108	Large historical carbon emissions from cultivated northern peatlands. Science Advances, 2021, 7, .	4.7	37

#	Article	IF	CITATIONS
109	Novel Representation of Leaf Phenology Improves Simulation of Amazonian Evergreen Forest Photosynthesis in a Land Surface Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2018MS001565.	1.3	36
110	Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model. Geoscientific Model Development, 2015, 8, 2263-2283.	1.3	36
111	A global yield dataset for major lignocellulosic bioenergy crops based on field measurements. Scientific Data, 2018, 5, 180169.	2.4	35
112	Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management. Biogeosciences, 2016, 13, 3757-3776.	1.3	34
113	How have past fire disturbances contributed to the current carbon balance of boreal ecosystems?. Biogeosciences, 2016, 13, 675-690.	1.3	34
114	Decoupling of greenness and gross primary productivity as aridity decreases. Remote Sensing of Environment, 2022, 279, 113120.	4.6	34
115	GOLUM-CNP v1.0: a data-driven modeling of carbon, nitrogen and phosphorus cycles in major terrestrial biomes. Geoscientific Model Development, 2018, 11, 3903-3928.	1.3	32
116	Trade-off between tree planting and wetland conservation in China. Nature Communications, 2022, 13, 1967.	5.8	32
117	Decadal trends in the seasonal-cycle amplitude of terrestrial CO ₂ exchange resulting from the ensemble of terrestrial biosphere models. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 28968.	0.8	31
118	Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nature Communications, 2018, 9, 5391.	5.8	31
119	Vapor Pressure Deficit and Sunlight Explain Seasonality of Leaf Phenology and Photosynthesis Across Amazonian Evergreen Broadleaved Forest. Global Biogeochemical Cycles, 2021, 35, e2020GB006893.	1.9	31
120	Benchmarking carbon fluxes of the ISIMIP2a biome models. Environmental Research Letters, 2017, 12, 045002.	2.2	30
121	Dominant regions and drivers of the variability of the global land carbon sink across timescales. Global Change Biology, 2018, 24, 3954-3968.	4.2	30
122	Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8.4.2. Geoscientific Model Development, 2018, 11, 409-428.	1.3	30
123	Temperature sensitivity of soil respiration across multiple time scales in a temperate plantation forest. Science of the Total Environment, 2019, 688, 479-485.	3.9	30
124	Surface conductance for evapotranspiration of tropical forests: Calculations, variations, and controls. Agricultural and Forest Meteorology, 2019, 275, 317-328.	1.9	28
125	Inventory of methane emissions from livestock in China from 1980 to 2013. Atmospheric Environment, 2018, 184, 69-76.	1.9	27
126	Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes. Environmental Research Letters, 2015, 10, 024018.	2.2	26

#	Article	IF	CITATIONS
127	Regional patterns of future runoff changes from Earth system models constrained by observation. Geophysical Research Letters, 2017, 44, 5540-5549.	1.5	26
128	Broad Consistency Between Satellite and Vegetation Model Estimates of Net Primary Productivity Across Global and Regional Scales. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3603-3616.	1.3	26
129	Fire enhances forest degradation within forest edge zones in Africa. Nature Geoscience, 2021, 14, 479-483.	5.4	26
130	Root respiration and its relation to nutrient contents in soil and root and EVI among 8 ecosystems, northern China. Plant and Soil, 2010, 333, 391-401.	1.8	25
131	Assessment of model estimates of land-atmosphere CO ₂ exchange across Northern Eurasia. Biogeosciences, 2015, 12, 4385-4405.	1.3	25
132	Was the extreme Northern Hemisphere greening in 2015 predictable?. Environmental Research Letters, 2017, 12, 044016.	2.2	25
133	Recent Slowdown of Anthropogenic Methane Emissions in China Driven by Stabilized Coal Production. Environmental Science and Technology Letters, 2021, 8, 739-746.	3.9	25
134	Spatiotemporal variations in the difference between satelliteâ€observed daily maximum land surface temperature and stationâ€based daily maximum nearâ€surface air temperature. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2254-2268.	1.2	24
135	Contributions of Climate Change, CO2, Land-Use Change, and Human Activities to Changes in River Flow across 10 Chinese Basins. Journal of Hydrometeorology, 2018, 19, 1899-1914.	0.7	24
136	A global map of planting years of plantations. Scientific Data, 2022, 9, 141.	2.4	24
137	Re-evaluating the 1940s CO ₂ plateau. Biogeosciences, 2016, 13, 4877-4897.	1.3	22
138	The carbon sequestration potential of China's grasslands. Ecosphere, 2018, 9, e02452.	1.0	22
139	Attribution of Lake Warming in Four Shallow Lakes in the Middle and Lower Yangtze River Basin. Environmental Science & Technology, 2019, 53, 12548-12555.	4.6	22
140	Changing the retention properties of catchments and their influence on runoff under climate change. Environmental Research Letters, 2018, 13, 094019.	2.2	21
141	A comparative study of anthropogenic CH ₄ emissions over China based on the ensembles of bottom-up inventories. Earth System Science Data, 2021, 13, 1073-1088.	3.7	20
142	Changes in forest biomass over China during the 2000s and implications for management. Forest Ecology and Management, 2015, 357, 76-83.	1.4	19
143	Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophysical Research Letters, 2018, 45, 1058-1068.	1.5	19
144	Irrigation, damming, and streamflow fluctuations of the Yellow River. Hydrology and Earth System Sciences, 2021, 25, 1133-1150.	1.9	19

#	Article	IF	CITATIONS
145	Simulating soil organic carbon in yedoma deposits during the Last Glacial Maximum in a land surface model. Geophysical Research Letters, 2016, 43, 5133-5142.	1.5	18
146	ORCHIDEE-MICT-BIOENERGY: an attempt to represent the production of lignocellulosic crops for bioenergy in a global vegetation model. Geoscientific Model Development, 2018, 11, 2249-2272.	1.3	18
147	Simulating CH ₄ and CO ₂ over South and East Asia using the zoomed chemistry transport model LMDz-INCA. Atmospheric Chemistry and Physics, 2018, 18, 9475-9497.	1.9	18
148	Modelling northern peatland area and carbon dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN r5488). Geoscientific Model Development, 2019, 12, 2961-2982.	1.3	18
149	Changes in productivity and carbon storage of grasslands in China under future global warming scenarios of 1.5°C and 2°C. Journal of Plant Ecology, 2019, 12, 804-814.	1.2	18
150	Simulated high-latitude soil thermal dynamics during the past 4 decades. Cryosphere, 2016, 10, 179-192.	1.5	17
151	Tropical forest soils serve as substantial and persistent methane sinks. Scientific Reports, 2019, 9, 16799.	1.6	16
152	Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations. PLoS ONE, 2015, 10, e0137275.	1.1	16
153	Response to Comment on "Surface Urban Heat Island Across 419 Global Big Cities― Environmental Science & Technology, 2012, 46, 6889-6890.	4.6	15
154	Multimodel projections and uncertainties of net ecosystem production in China over the twenty-first century. Science Bulletin, 2014, 59, 4681-4691.	1.7	15
155	Global vegetation biomass production efficiency constrained by models and observations. Global Change Biology, 2020, 26, 1474-1484.	4.2	15
156	Improvement of the Irrigation Scheme in the ORCHIDEE Land Surface Model and Impacts of Irrigation on Regional Water Budgets Over China. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001770.	1.3	15
157	Soil moisture seasonality alters vegetation response to drought in the Mongolian Plateau. Environmental Research Letters, 2021, 16, 014050.	2.2	15
158	A Processâ€Based Model Integrating Remote Sensing Data for Evaluating Ecosystem Services. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002451.	1.3	15
159	Causes of slowingâ€down seasonal CO ₂ amplitude at Mauna Loa. Global Change Biology, 2020, 26, 4462-4477.	4.2	14
160	A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth, 2022, 5, 86-97.	3.6	14
161	Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data. Hydrology and Earth System Sciences, 2018, 22, 5463-5484.	1.9	13
162	Quantifying the unauthorized lake water withdrawals and their impacts on the water budget of eutrophic lake Dianchi, China. Journal of Hydrology, 2018, 565, 39-48.	2.3	13

#	Article	IF	CITATIONS
163	Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals. Scientific Reports, 2017, 7, 44305.	1.6	11
164	Non-uniform seasonal warming regulates vegetation greening and atmospheric CO ₂ amplification over northern lands. Environmental Research Letters, 2018, 13, 124008.	2.2	11
165	Spatial Pattern and Environmental Drivers of Acid Phosphatase Activity in Europe. Frontiers in Big Data, 2019, 2, 51.	1.8	11
166	Low and contrasting impacts of vegetation CO ₂ fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO ₂ effects. Hydrology and Earth System Sciences, 2021, 25, 3411-3427.	1.9	11
167	Ectomycorrhizal fungi respiration quantification and drivers in three differently-aged larch plantations. Agricultural and Forest Meteorology, 2019, 265, 245-251.	1.9	10
168	Missed atmospheric organic phosphorus emitted by terrestrial plants, part 2: Experiment of volatile phosphorus. Environmental Pollution, 2020, 258, 113728.	3.7	10
169	A Warm Summer is Unlikely to Stop Transmission of COVIDâ€19 Naturally. GeoHealth, 2020, 4, e2020GH000292.	1.9	10
170	Long-term linear trends mask phenological shifts. International Journal of Biometeorology, 2016, 60, 1611-1613.	1.3	9
171	Strong but Intermittent Spatial Covariations in Tropical Land Temperature. Geophysical Research Letters, 2019, 46, 356-364.	1.5	9
172	Wetlands Cool Land Surface Temperature in Tropical Regions but Warm in Boreal Regions. Remote Sensing, 2021, 13, 1439.	1.8	8
173	Comment on "Surface Urban Heat Island Across 419 Global Big Cities― Environmental Science & Technology, 2012, 46, 6888-6888.	4.6	7
174	Wetlands of North Africa During the Midâ€Holocene Were at Least Five Times the Area Today. Geophysical Research Letters, 2021, 48, e2021GL094194.	1.5	7
175	Gridded maps of wetlands dynamics over mid-low latitudes for 1980–2020 based on TOPMODEL. Scientific Data, 2022, 9, .	2.4	7
176	Mapping global forest biomass and its changes over the first decade of the 21st century. Science China Earth Sciences, 2019, 62, 585-594.	2.3	6
177	Relations between bacterial communities and enzyme functions of two paddy soils. European Journal of Soil Science, 2018, 69, 655-665.	1.8	5
178	Gross changes in forest area shape the future carbon balance of tropical forests. Biogeosciences, 2018, 15, 91-103.	1.3	3
179	Greenhouse Gas Concentration and Volcanic Eruptions Controlled the Variability of Terrestrial Carbon Uptake Over the Last Millennium. Journal of Advances in Modeling Earth Systems, 2019, 11, 1715-1734.	1.3	3
180	Analysis of slight precipitation in China during the past decades and its relationship with advanced very high radiometric resolution normalized difference vegetation index. International Journal of Climatology, 2018, 38, 5563-5575.	1.5	2

#	Article	IF	CITATIONS
181	Reply to Comment by Rigolot on "Narratives Behind Livestock Methane Mitigation Studies Matterâ€. AGU Advances, 2021, 2, e2021AV000549.	2.3	2
182	Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nature Ecology and Evolution, 2021, 5, 736-737.	3.4	1