Yong Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/4734250/yong-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,317 17 21 20 h-index g-index citations papers 10.6 21 1,490 4.42 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
20	Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. <i>Nano Energy</i> , 2014 , 4, 23-30	17.1	258
19	Prussian Blue@C Composite as an Ultrahigh-Rate and Long-Life Sodium-Ion Battery Cathode. <i>Advanced Functional Materials</i> , 2016 , 26, 5315-5321	15.6	241
18	Ever-Increasing Pseudocapacitance in RGOMnORGO Sandwich Nanostructures for Ultrahigh-Rate Lithium Storage. <i>Advanced Functional Materials</i> , 2016 , 26, 2198-2206	15.6	204
17	A promising cathode material of sodium ironlickel hexacyanoferrate for sodium ion batteries. Journal of Power Sources, 2015 , 275, 45-49	8.9	107
16	Ultrafast, Highly Reversible, and Cycle-Stable Lithium Storage Boosted by Pseudocapacitance in Sn-Based Alloying Anodes. <i>Advanced Materials</i> , 2017 , 29, 1606499	24	86
15	A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 37, 627-633	16.2	70
14	Spatially-confined lithiation delithiation in highly dense nanocomposite anodes towards advanced lithium-ion batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 1471-1479	35.4	62
13	Origin of room temperature ferromagnetism in MgO films. <i>Applied Physics Letters</i> , 2013 , 102, 072406	3.4	48
12	Interfacial Superassembly of Grape-Like MnO-Ni@C Frameworks for Superior Lithium Storage. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12, 13770-13780	9.5	36
11	Rational design of metal oxide nanocomposite anodes for advanced lithium ion batteries. <i>Journal of Power Sources</i> , 2015 , 282, 1-8	8.9	35
10	Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO2 Nanocluster toward High-Performance Lithium Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 26367-73	9.5	31
9	Micro-/nano-structured hybrid of exfoliated graphite and Co 3 O 4 nanoparticles as high-performance anode material for Li-ion batteries. <i>Electrochimica Acta</i> , 2016 , 213, 98-106	6.7	25
8	Abnormal behaviors in electrical transport properties of cobalt-doped tin oxide thin films. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16060		20
7	FeCo alloy catalysts promoting polysulfide conversion for advanced lithium ulfur batteries. <i>Journal of Energy Chemistry</i> , 2020 , 49, 339-347	12	19
6	High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance. <i>Journal of Energy Chemistry</i> , 2020 , 50, 240-247	12	19
5	Enhanced lithium storage performance in three-dimensional porous SnO2-Fe2O3 composite anode films. <i>Electrochimica Acta</i> , 2014 , 136, 27-32	6.7	18
4	Fe2O3Ag Porous Film Anodes for Ultrahigh-Rate Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2014 , 1, 115	541360	17

LIST OF PUBLICATIONS

3	Cr2O3 ultrasmall nanoparticles filled carbon nanocapsules deriving from Cr(VI) for enhanced lithium storage. <i>Chemical Physics Letters</i> , 2018 , 704, 31-36	2.5	13	
2	Synthesis of CoS2 Nanoparticles/Nitrogen-Doped Graphitic Carbon/Carbon Nanotubes Composite as an Advanced Anode for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2020 , 7, 2752-2761	4.3	5	
1	Silkworm Excrement Derived In-situ Co-doped Nanoporous Carbon as Confining Sulfur Host for Lithium Sulfur Batteries. <i>ChemistrySelect</i> , 2019 , 4, 5678-5685	1.8	3	