Kingsley Dixon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/473405/kingsley-dixon-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

380 15,026 63 105 h-index g-index citations papers 6.87 17,702 4.2 395 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
380	Urban native vegetation remnants support more diverse native bee communities than residential gardens in Australia's southwest biodiversity hotspot. <i>Biological Conservation</i> , 2022 , 265, 109408	6.2	1
379	SEED TRAITS AND CLIMATE RESILIENCE IN THREE MESUA SPECIES FROM SRI LANKA. <i>Flora:</i> Morphology, Distribution, Functional Ecology of Plants, 2022 , 287, 152004	1.9	
378	Prolific or precarious: a review of the status of Australian sandalwood (Santalum spicatum [R.Br.] A.DC., Santalaceae). <i>Rangeland Journal</i> , 2021 ,	1.5	1
377	Interactions between the introduced European honey bee and native bees in urban areas varies by year, habitat type and native bee guild. <i>Biological Journal of the Linnean Society</i> , 2021 , 133, 725-743	1.9	8
376	Plant scientists' research attention is skewed towards colourful, conspicuous and broadly distributed flowers. <i>Nature Plants</i> , 2021 , 7, 574-578	11.5	5
375	Seed encrusting with salicylic acid: A novel approach to improve establishment of grass species in ecological restoration. <i>PLoS ONE</i> , 2021 , 16, e0242035	3.7	1
374	A bee's eye view of remarkable floral colour patterns in the south-west Australian biodiversity hotspot revealed by false colour photography. <i>Annals of Botany</i> , 2021 , 128, 821-824	4.1	2
373	Compromised root development constrains the establishment potential of native plants in unamended alkaline post-mining substrates. <i>Plant and Soil</i> , 2021 , 461, 163-179	4.2	10
372	Nitrogen limitation and calcifuge plant strategies constrain the establishment of native vegetation on magnetite mine tailings. <i>Plant and Soil</i> , 2021 , 461, 181-201	4.2	9
371	Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do?. <i>Soil Ecology Letters</i> , 2021 , 3, 73-82	2.7	11
370	Interactions between soil covers and rainfall affect post-mining plant restoration in a semi-arid Banded Iron Formation. <i>Ecological Engineering</i> , 2021 , 159, 106101	3.9	2
369	Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. <i>Global Change Biology</i> , 2021 , 27, 1328-1348	11.4	76
368	Indigenous and local communities can boost seed supply in the UN decade on ecosystem restoration. <i>Ambio</i> , 2021 , 1	6.5	4
367	Initiating pedogenesis of magnetite tailings using Lupinus angustifolius (narrow-leaf lupin) as an ecological engineer to promote native plant establishment. <i>Science of the Total Environment</i> , 2021 , 788, 147622	10.2	0
366	High rock content enhances plant resistance to drought in saline topsoils. <i>Journal of Arid Environments</i> , 2021 , 193, 104589	2.5	1
365	Using monitors to monitor ecological restoration: Presence may not indicate persistence. <i>Austral Ecology</i> , 2020 , 45, 921	1.5	3
364	International principles and standards for native seeds in ecological restoration. <i>Restoration Ecology</i> , 2020 , 28, S286	3.1	23

363	Dormancy and germination: making every seed count in restoration. <i>Restoration Ecology</i> , 2020 , 28, S256	53.1	33
362	Collection and production of native seeds for ecological restoration. <i>Restoration Ecology</i> , 2020 , 28, S22	83.1	21
361	Machine Learning Regression Model for Predicting Honey Harvests. <i>Agriculture (Switzerland)</i> , 2020 , 10, 118	3	5
360	Seed enhancement: getting seeds restoration-ready. <i>Restoration Ecology</i> , 2020 , 28, S266	3.1	29
359	Seed use in the field: delivering seeds for restoration success. <i>Restoration Ecology</i> , 2020 , 28, S276	3.1	18
358	Cryobiotechnologies: Tools for expanding long-term ex situ conservation to all plant species. <i>Biological Conservation</i> , 2020 , 250, 108736	6.2	22
357	Foreword: International Standards for Native Seeds in Ecological Restoration. <i>Restoration Ecology</i> , 2020 , 28, S216	3.1	8
356	Examining assumptions of soil microbial ecology in the monitoring of ecological restoration. <i>Ecological Solutions and Evidence</i> , 2020 , 1, e12031	2.1	7
355	Preparing for the worst: Utilizing stress-tolerant soil microbial communities to aid ecological restoration in the Anthropocene. <i>Ecological Solutions and Evidence</i> , 2020 , 1, e12027	2.1	11
354	Ecological factors driving pollination success in an orchid that mimics a range of Fabaceae. <i>Botanical Journal of the Linnean Society</i> , 2020 , 194, 253-269	2.2	4
353	Structural Features of Carnivorous Plant (,) Tubers as Abiotic Stress Resistance Organs. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	3
352	Pronounced differences in visitation by potential pollinators to co-occurring species of Fabaceae in the Southwest Australian biodiversity hotspot. <i>Botanical Journal of the Linnean Society</i> , 2020 , 194, 308-	3 25	4
351	E-greening the planet. <i>Ecology Letters</i> , 2020 , 23, 1733-1735	10	1
350	Rotating Arrays of Orchid Flowers: A Simple and Effective Method for Studying Pollination in Food Deceptive Plants. <i>Diversity</i> , 2020 , 12, 286	2.5	4
349	The potential for phosphorus benefits through root placement in the rhizosphere of phosphorus-mobilising neighbours. <i>Oecologia</i> , 2020 , 193, 843-855	2.9	4
348	Demographic, seed and microsite limitations to seedling recruitment in semi-arid mine site restoration. <i>Plant and Soil</i> , 2020 , 457, 113-129	4.2	6
347	The relative performance of sampling methods for native bees: an empirical test and review of the literature. <i>Ecosphere</i> , 2020 , 11, e03076	3.1	42
346	The SER Standards, cultural ecosystems, and the nature-culture nexusâl reply to Evans and Davis. <i>Restoration Ecology</i> , 2019 , 27, 243-246	3.1	5

345	Methodological Ambiguity and Inconsistency Constrain Unmanned Aerial Vehicles as A Silver Bullet for Monitoring Ecological Restoration. <i>Remote Sensing</i> , 2019 , 11, 1180	5	18
344	Elucidating the surface geometric design of hydrophobic Australian leaves: experimental and modeling studies. <i>Heliyon</i> , 2019 , 5, e01316	3.6	
343	Time for a paradigm shift toward a restorative culture. Restoration Ecology, 2019, 27, 924-928	3.1	18
342	Temporal dynamics of seedling emergence among four fire ephemerals: the interplay of after-ripening and embryo growth with smoke. <i>Seed Science Research</i> , 2019 , 29, 104-114	1.3	3
341	The addition of mine waste rock to topsoil improves microsite potential and seedling emergence from broadcast seeds in an arid environment. <i>Plant and Soil</i> , 2019 , 440, 71-84	4.2	5
340	An ecological perspective on 'plant carnivory beyond bogs': nutritional benefits of prey capture for the Mediterranean carnivorous plant Drosophyllum lusitanicum. <i>Annals of Botany</i> , 2019 , 124, 65-76	4.1	2
339	Avoiding tailings dam collapses requires governance, partnership and responsibility. <i>Biodiversity and Conservation</i> , 2019 , 28, 1933-1934	3.4	10
338	Optimising seed processing techniques to improve germination and sowability of native grasses for ecological restoration. <i>Plant Biology</i> , 2019 , 21, 415-424	3.7	16
337	Morphophysiological dormancy in the basal angiosperm order Nymphaeales. <i>Annals of Botany</i> , 2019 , 123, 95-106	4.1	6
336	Seed germination and dormancy traits of forbs and shrubs important for restoration of North American dryland ecosystems. <i>Plant Biology</i> , 2019 , 21, 458-469	3.7	17
335	International principles and standards for the practice of ecological restoration. Second edition. <i>Restoration Ecology</i> , 2019 , 27, S1	3.1	250
334	Assessment of the Diversity of Fungal Community Composition Associated With and Its Rhizosphere Soil From Kuwait Desert. <i>Frontiers in Microbiology</i> , 2019 , 10, 63	5.7	15
333	Overlooked and undervalued: the neglected role of fauna and a global bias in ecological restoration assessments. <i>Pacific Conservation Biology</i> , 2019 , 25, 331	1.2	17
332	Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization. <i>Science of the Total Environment</i> , 2019 , 651, 192-202	10.2	24
331	Plastome-Wide Rearrangements and Gene Losses in Carnivorous Droseraceae. <i>Genome Biology and Evolution</i> , 2019 , 11, 472-485	3.9	23
330	Evaluating the diversity and composition of bacterial communities associated with Vachellia pachyceras - the only existing native tree species in the Kuwait desert. <i>Canadian Journal of Microbiology</i> , 2019 , 65, 235-251	3.2	O
329	Do Abrasion- or Temperature-Based Techniques More Effectively Relieve Physical Dormancy in Seeds of Cold Desert Perennials?. <i>Rangeland Ecology and Management</i> , 2018 , 71, 318-322	2.2	2
328	Measuring metabolic rates of small terrestrial organisms by fluorescence-based closed-system respirometry. <i>Journal of Experimental Biology</i> , 2018 , 221,	3	6

327	Flowering in darkness: a new species of subterranean orchid Rhizanthella (Orchidaceae; Orchidoideae; Diurideae) from Western Australia. <i>Phytotaxa</i> , 2018 , 334, 75	0.7	1
326	Seed germinability and longevity influences regeneration of Acacia gerrardii. <i>Plant Ecology</i> , 2018 , 219, 591-609	1.7	3
325	Appropriate aspirations for effective post-mining restoration and rehabilitation: a response to Kathierczak et al <i>Environmental Earth Sciences</i> , 2018 , 77, 1	2.9	39
324	Root dynamics and survival in a nutrient-poor and species-rich woodland under a drying climate. <i>Plant and Soil</i> , 2018 , 424, 91-102	4.2	3
323	Incorporating biophysical ecology into high-resolution restoration targets: insect pollinator habitat suitability models. <i>Restoration Ecology</i> , 2018 , 26, 338-347	3.1	13
322	Decline and Restoration Ecology of Australian Seagrasses 2018 , 665-704		11
321	DNA metabarcodingâl new approach to fauna monitoring in mine site restoration. <i>Restoration Ecology</i> , 2018 , 26, 1098-1107	3.1	20
320	The SER Standards: a globally relevant and inclusive tool for improving restoration practiceâl reply to Higgs et al <i>Restoration Ecology</i> , 2018 , 26, 426-430	3.1	16
319	National standards: Reasserting the ecological restoration framework in uncertain times. <i>Ecological Management and Restoration</i> , 2018 , 19, 79-89	1.4	2
318	Endangered fairies: two new species of Caladenia (Orchidaceae; Orchidoideae; Diurideae), from the bauxite plateaux of southwestern Western Australia. <i>Phytotaxa</i> , 2018 , 334, 87	0.7	1
317	Systematics and evolution of Droseraceae 2018,		4
316	Novel and divergent viruses associated with Australian orchid-fungus symbioses. <i>Virus Research</i> , 2018 , 244, 276-283	6.4	16
315	Protocol Development Tool (PDT) for seed encrusting and pelleting. <i>Seed Science and Technology</i> , 2018 , 46, 393-405	0.6	5
314	Ethical seed sourcing is a key issue in meeting global restoration targets. Current Biology, 2018, 28, R13	7 &. -₃R1∶	37291
313	Understanding the long-term impact of prescribed burning in mediterranean-climate biodiversity hotspots, with a focus on south-western Australia. <i>International Journal of Wildland Fire</i> , 2018 , 27, 643	3.2	18
312	Masquerading as pea plants: behavioural and morphological evidence for mimicry of multiple models in an Australian orchid. <i>Annals of Botany</i> , 2018 , 122, 1061-1073	4.1	11
311	Seed-dormancy depth is partitioned more strongly among habitats than among species in tropical ephemerals. <i>Australian Journal of Botany</i> , 2018 , 66, 230	1.2	5
310	Edaphic constraints on seed germination and emergence of three Acacia species for dryland restoration in Saudi Arabia. <i>Plant Ecology</i> , 2017 , 218, 55-66	1.7	4

309	Evaluating multilocus Bayesian species delimitation for discovery of cryptic mycorrhizal diversity. <i>Fungal Ecology</i> , 2017 , 26, 74-84	4.1	13
308	Landscape context alters cost of living in honeybee metabolism and feeding. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2017 , 284,	4.4	7
307	Sulfur accumulation in gypsum-forming thiophores has its roots firmly in calcium. <i>Environmental and Experimental Botany</i> , 2017 , 137, 208-219	5.9	5
306	Overcoming topsoil deficits in restoration of semiarid lands: Designing hydrologically favourable soil covers for seedling emergence. <i>Ecological Engineering</i> , 2017 , 105, 102-117	3.9	27
305	Foliar gypsum formation and litter production in the desert shrub, Acacia bivenosa, influences sulfur and calcium biogeochemical cycling in arid habitats. <i>Plant and Soil</i> , 2017 , 417, 53-68	4.2	3
304	Microbial Functional Capacity Is Preserved Within Engineered Soil Formulations Used In Mine Site Restoration. <i>Scientific Reports</i> , 2017 , 7, 564	4.9	25
303	Seed dormancy, soil type and protective shelters influence seedling emergence at Shark Bay, Western Australia: Insight into global dryland revegetation. <i>Ecological Management and Restoration</i> , 2017 , 18, 156-163	1.4	1
302	Is a science-policy nexus void leading to restoration failure in global mining?. <i>Environmental Science and Policy</i> , 2017 , 72, 52-54	6.2	14
301	Seed Coating: Science or Marketing Spin?. <i>Trends in Plant Science</i> , 2017 , 22, 106-116	13.1	99
300	One giant leap for mankind: can ecopoiesis avert mine tailings disasters?. Plant and Soil, 2017, 421, 1-5	4.2	25
299	The European Native Seed Industry: Characterization and Perspectives in Grassland Restoration. <i>Sustainability</i> , 2017 , 9, 1682	3.6	31
298	Seed dormancy and germination of Halophila ovalis mediated by simulated seasonal temperature changes. <i>Estuarine, Coastal and Shelf Science</i> , 2017 , 198, 156-162	2.9	5
297	Evolutionary relationships among pollinators and repeated pollinator sharing in sexually deceptive orchids. <i>Journal of Evolutionary Biology</i> , 2017 , 30, 1674-1691	2.3	31
296	Defining the role of fire in alleviating seed dormancy in a rare Mediterranean endemic subshrub. <i>AoB PLANTS</i> , 2017 , 9, plx036	2.9	11
295	The challenges of using high-throughput sequencing to track multiple bipartite mycoviruses of wild orchid-fungus partnerships over consecutive years. <i>Virology</i> , 2017 , 510, 297-304	3.6	14
294	Identifying critical recruitment bottlenecks limiting seedling establishment in a degraded seagrass ecosystem. <i>Scientific Reports</i> , 2017 , 7, 14786	4.9	25
293	Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events. <i>Journal of Applied Ecology</i> , 2017 , 54, 997-	1007	42
292	Reproduction at the extremes: pseudovivipary, hybridization and genetic mosaicism in Posidonia australis (Posidoniaceae). <i>Annals of Botany</i> , 2016 , 117, 237-47	4.1	22

(2016-2016)

291	Geographical range and host breadth of Sebacina or chid mycorrhizal fungi associating with Caladeniain south-western Australia. <i>Botanical Journal of the Linnean Society</i> , 2016 , 182, 140-151	2.2	14	
290	Ant biodiversity and its environmental predictors in the North Kimberley region of Australiaâl seasonal tropics. <i>Biodiversity and Conservation</i> , 2016 , 25, 1727-1759	3.4	8	
289	Seed reproductive biology of the rare aquatic carnivorous plantAldrovanda vesiculosa(Droseraceae). <i>Botanical Journal of the Linnean Society</i> , 2016 , 180, 515-529	2.2	6	
288	Overcoming physiological dormancy in seeds of Triodia (Poaceae) to improve restoration in the arid zone. <i>Restoration Ecology</i> , 2016 , 24, S64-S76	3.1	33	
287	Biodiversity responses to vegetation structure in a fragmented landscape: ant communities in a peri-urban coastal dune system. <i>Journal of Insect Conservation</i> , 2016 , 20, 485-495	2.1	7	
286	Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. <i>Restoration Ecology</i> , 2016 , 24, S43-S52	3.1	86	
285	Flash flaming effectively removes appendages and improves the seed coating potential of grass florets. <i>Restoration Ecology</i> , 2016 , 24, S98-S105	3.1	21	
284	Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature. Journal of Experimental Biology, 2016 , 219, 1552-62	3	12	
283	Cooperative Extension: A Model of Science-Practice Integration for Ecosystem Restoration. <i>Trends in Plant Science</i> , 2016 , 21, 410-417	13.1	4	
282	Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedilum villosum (Lindl.) Stein. from Thailand. <i>South African Journal of Botany</i> , 2016 , 104, 76-81	2.9	25	
281	Using in situ seed baiting technique to isolate and identify endophytic and mycorrhizal fungi from seeds of a threatened epiphytic orchid, Dendrobium friedericksianum Rchb.f. (Orchidaceae). <i>Agriculture and Natural Resources</i> , 2016 , 50, 8-13	1.3	8	
280	Soil respiration dynamics in fire affected semi-arid ecosystems: Effects of vegetation type and environmental factors. <i>Science of the Total Environment</i> , 2016 , 572, 1385-1394	10.2	40	
279	Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. <i>Ecological Indicators</i> , 2016 , 63, 14-22	5.8	87	
278	Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. <i>Plant Ecology</i> , 2016 , 217, 81-95	1.7	58	
277	Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration. <i>Soil</i> , 2016 , 2, 287-298	5.8	38	
276	Behaviour of sexually deceived ichneumonid wasps and its implications for pollination inCryptostylis(Orchidaceae). <i>Biological Journal of the Linnean Society</i> , 2016 , 119, 283-298	1.9	11	
275	Setting the scene for dryland recovery: an overview and key findings from a workshop targeting seed-based restoration. <i>Restoration Ecology</i> , 2016 , 24, S36-S42	3.1	35	
274	Plant recruitment from the soil seed bank depends on topsoil stockpile age, height, and storage history in an arid environment. <i>Restoration Ecology</i> , 2016 , 24, S53-S61	3.1	26	

273	Improving saltland revegetation through understanding the âflecruitment nicheâflpotential lessons for ecological restoration in extreme environments. <i>Restoration Ecology</i> , 2016 , 24, S91-S97	3.1	8
272	Seed production areas for the global restoration challenge. <i>Ecology and Evolution</i> , 2016 , 6, 7490-7497	2.8	45
271	Ex situ germplasm preservation and plant regeneration of a threatened terrestrial orchid, Caladenia huegelii, through micropropagation and cryopreservation. <i>Australian Journal of Botany</i> , 2016 , 64, 659	1.2	4
270	A cryopreservation protocol for ex situ conservation of terrestrial orchids using asymbiotic primary and secondary (adventitious) protocorms. <i>In Vitro Cellular and Developmental Biology - Plant</i> , 2016 , 52, 185-195	2.3	6
269	Novel Endorna-like viruses, including three with two open reading frames, challenge the membership criteria and taxonomy of the Endornaviridae. <i>Virology</i> , 2016 , 499, 203-211	3.6	23
268	National standards for the practice of ecological restoration in Australia. <i>Restoration Ecology</i> , 2016 , 24, S4	3.1	137
267	Characterization of the first two viruses described from wild populations of hammer orchids (Drakaea spp.) in Australia. <i>Plant Pathology</i> , 2016 , 65, 163-172	2.8	6
266	Seed dormancy and persistent sediment seed banks of ephemeral freshwater rock pools in the Australian monsoon tropics. <i>Annals of Botany</i> , 2015 , 115, 847-59	4.1	19
265	Absence of nectar resource partitioning in a community of parasitoid wasps. <i>Journal of Insect Conservation</i> , 2015 , 19, 703-711	2.1	9
264	Continent-wide distribution in mycorrhizal fungi: implications for the biogeography of specialized orchids. <i>Annals of Botany</i> , 2015 , 116, 413-21	4.1	43
263	Population structure integral to seed collection guidelines: A response to Hoban and Schlarbaum (2014). <i>Biological Conservation</i> , 2015 , 184, 465-466	6.2	15
262	Mismatch in the distribution of floral ecotypes and pollinators: insights into the evolution of sexually deceptive orchids. <i>Journal of Evolutionary Biology</i> , 2015 , 28, 601-12	2.3	8
261	Germination and seedling establishment in orchids: a complex of requirements. <i>Annals of Botany</i> , 2015 , 116, 391-402	4.1	129
260	Orchid conservation: making the links. <i>Annals of Botany</i> , 2015 , 116, 377-9	4.1	25
259	Physiological plasticity of metabolic rates in the invasive honey bee and an endemic Australian bee species. <i>Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology</i> , 2015 , 185, 835-44	2.2	13
258	Ecological and genetic evidence for cryptic ecotypes in a rare sexually deceptive orchid,Drakaea elastica. <i>Botanical Journal of the Linnean Society</i> , 2015 , 177, 124-140	2.2	20
257	What are karrikins and how were they 'discovered' by plants?. BMC Biology, 2015, 13, 108	7.3	51
256	Population ecology of the endangered aquatic carnivorous macrophyte Aldrovanda vesiculosa at a naturalised site in North America. <i>Freshwater Biology</i> , 2015 , 60, 1772-1783	3.1	8

CRYOPRESERVATION OF SECONDARY PROTOCORMS, AN ALTERNATIVE PATHWAY FOR CONSERVATION OF WESTERN AUSTRALIAN TERRESTRIAL ORCHIDS. <i>Acta Horticulturae</i> , 2015 , 61-67	0.3	
Vegetation patterns and hydro-geological drivers of freshwater rock pool communities in the monsoon-tropical Kimberley region, Western Australia. <i>Journal of Vegetation Science</i> , 2015 , 26, 1184-17	197 ¹	8
Pollinator rarity as a threat to a plant with a specialized pollination system. <i>Botanical Journal of the Linnean Society</i> , 2015 , 179, 511-525	2.2	21
Edge Effects along a Seagrass Margin Result in an Increased Grazing Risk on Posidonia australis Transplants. <i>PLoS ONE</i> , 2015 , 10, e0137778	3.7	8
Acid-digestion improves native grass seed handling and germination. <i>Seed Science and Technology</i> , 2015 , 43, 313-317	0.6	12
Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?. <i>Plant, Cell and Environment,</i> 2015 , 38, 50-60	8.4	18
Spatio-temporal water dynamics in mature Banksia menziesii trees during drought. <i>Physiologia Plantarum</i> , 2014 , 152, 301-15	4.6	16
Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. <i>New Phytologist</i> , 2014 , 203, 939-52	9.8	74
Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). <i>Annals of Botany</i> , 2014 , 113, 629-41	4.1	62
Applications and implications of ecological energetics. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 280-90	0 10.9	78
Specialized ecological interactions and plant species rarity: The role of pollinators and mycorrhizal fungi across multiple spatial scales. <i>Biological Conservation</i> , 2014 , 169, 285-295	6.2	53
The road to confusion is paved with novel ecosystem labels: a reply to Hobbs et al. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 646-7	10.9	31
Seedling mortality during biphasic drought in sandy Mediterranean soils. <i>Functional Plant Biology</i> , 2014 , 41, 1239-1248	2.7	14
In vitro propagation of temperate Australian terrestrial orchids: revisiting asymbiotic compared with symbiotic germination. <i>Botanical Journal of the Linnean Society</i> , 2014 , 176, 556-566	2.2	16
A critique of the 'novel ecosystem' concept. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 548-53	10.9	197
Complementary plant nutrient-acquisition strategies promote growth of neighbour species. <i>Functional Ecology</i> , 2014 , 28, 819-828	5.6	48
A continental-scale study of seed lifespan in experimental storage examining seed, plant, and environmental traits associated with longevity. <i>Biodiversity and Conservation</i> , 2014 , 23, 1081-1104	3.4	50
Biogenic ethylene promotes seedling emergence from the sediment seed bank in an ephemeral tropical rock pool habitat. <i>Plant and Soil</i> , 2014 , 380, 73-87	4.2	11
	CONSERVATION OF WESTERN AUSTRALIAN TERRESTRIAL ORCHIDS. Acta Horticulturae, 2015, 61-67 Vegetation patterns and hydro-geological drivers of Freshwater rock pool communities in the monsoon-tropical Kimberley region, Western Australia. Journal of Vegetation Science, 2015, 26, 1184-119 Pollinator rarity as a threat to a plant with a specialized pollination system. Botanical Journal of the Linnean Society, 2015, 179, 511-525 Edge Effects along a Seagrass Margin Result in an Increased Grazing Risk on Posidonia australis Transplants. PLoS ONE, 2015, 10, e0137778 Acid-digestion improves native grass seed handling and germination. Seed Science and Technology, 2015, 43, 313-317 Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?. Plant, Cell and Environment, 2015, 38, 50-60 Spatio-temporal water dynamics in mature Banksia menziesil trees during drought. Physiologia Plantarum, 2014, 152, 301-15 Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. New Phytologist, 2014, 203, 939-52 Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). Annals of Botany, 2014, 113, 629-41 Applications and implications of ecological energetics. Trends in Ecology and Evolution, 2014, 29, 280-90 Specialized ecological interactions and plant species rarity: The role of pollinators and mycorrhizal fungi across multiple spatial scales. Biological Conservation, 2014, 169, 285-295 The road to confusion is paved with novel ecosystem labels: a reply to Hobbs et al. Trends in Ecology and Evolution, 2014, 29, 646-7 Seedling mortality during biphasic drought in sandy Mediterranean soils. Functional Plant Biology, 2014, 1, 1239-1248 In vitro propagation of temperate Australian terrestrial orchids: revisiting asymbiotic compared with symbiotic germination. Botanical Journal of the Linnean Society, 2014, 176, 556-566 A critique of the 'novel ecosystem' concept. Trends in	Vegetation patterns and hydro-geological drivers of freshwater rock pool communities in the monsoon-tropical Kimberley region, Western Australia. Journal of Vegetation Science, 2015, 26, 1184-11977 Pollinator rarity as a threat to a plant with a specialized pollination system. Botanical Journal of the Linnean Society, 2015, 179, 511-525 Edge Effects along a Seagrass Margin Result in an Increased Grazing Risk on Posidonia australis Transplants. PLoS ONE, 2015, 10, e0137778 Acid-digestion improves native grass seed handling and germination. Seed Science and Technology, 2015, 43, 313-317 Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?. Plant, Cell and Environment, 2015, 38, 50-60 Spatio-temporal water dynamics in mature Banksia menziesii trees during drought. Physiologia Plantarum, 2014, 152, 301-15 Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. New Phytologisis, 2014, 203, 939-52 Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). Annals of Botany, 2014, 113, 629-41 Applications and implications of ecological energetics. Trends in Ecology and Evolution, 2014, 29, 280-90 10.9 Specialized ecological interactions and plant species rarity: The role of pollinators and mycorrhizal fungi across multiple spatial scales. Biological Conservation, 2014, 169, 285-295 The road to confusion is paved with novel ecosystem labels: a reply to Hobbs et al. Trends in Ecology and Evolution, 2014, 29, 646-7 Seedling mortality during biphasic drought in sandy Mediterranean soils. Functional Plant Biology, 2014, 41, 1239-1248 In vitro propagation of temperate Australian terrestrial orchids: revisiting asymbiotic compared with symbiotic germination. Botanical Journal of the Linnean Society, 2014, 176, 556-566 A critique of the 'novel ecosystem' concept. Trends in Ecology and Evolution, 2014, 29, 548-53 A continental-scale study of seed life

237	Ex situ Conservation and Cryopreservation of Orchid Germplasm. <i>International Journal of Plant Sciences</i> , 2014 , 175, 46-58	2.6	38
236	Strigolactone Hormones and Their Stereoisomers Signal through Two Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis. <i>Plant Physiology</i> , 2014 , 165, 1221-1232	6.6	187
235	Germination responses of four native terrestrial orchids from south-west Western Australia to temperature and light treatments. <i>Plant Cell, Tissue and Organ Culture</i> , 2014 , 118, 559-569	2.7	8
234	Dispersal potential of Scaevola crassifolia (Goodeniaceae) is influenced by intraspecific variation in fruit morphology along a latitudinal environmental gradient. <i>Australian Journal of Botany</i> , 2014 , 62, 56	1.2	6
233	Inorganic Nutrient Supplements Constrain Restoration Potential of Seedlings of the Seagrass, Posidonia australis. <i>Restoration Ecology</i> , 2014 , 22, 196-203	3.1	21
232	Changes in the composition and behaviour of a pollinator guild with plant population size and the consequences for plant fecundity. <i>Functional Ecology</i> , 2014 , 28, 846-856	5.6	15
231	Waterproofing Topsoil Stockpiles Minimizes Viability Decline in the Soil Seed Bank in an Arid Environment. <i>Restoration Ecology</i> , 2014 , 22, 495-501	3.1	33
230	Proliferation and harvesting of secondary protocorms as a novel means for improving propagation of terrestrial orchids. <i>Australian Journal of Botany</i> , 2014 , 62, 614	1.2	5
229	The persistence and germination of fern spores in fire-prone, semi-arid environments. <i>Australian Journal of Botany</i> , 2014 , 62, 518	1.2	5
228	Effects of habitat fragmentation on plant reproductive success and population viability at the landscape and habitat scale. <i>Biological Conservation</i> , 2013 , 159, 16-23	6.2	43
227	Convergent specialization âlthe sharing of pollinators by sympatric genera of sexually deceptive orchids. <i>Journal of Ecology</i> , 2013 , 101, 826-835	6	27
226	Increasing Soil Water Retention with Native-Sourced Mulch Improves Seedling Establishment in Postmine Mediterranean Sandy Soils. <i>Restoration Ecology</i> , 2013 , 21, 617-626	3.1	42
225	Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. <i>Annals of Botany</i> , 2013 , 111, 1233-41	4.1	43
224	Full spectrum X-ray mapping reveals differential localization of salt in germinating seeds of differing salt tolerance. <i>Botanical Journal of the Linnean Society</i> , 2013 , 173, 129-142	2.2	12
223	Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. <i>Molecular Plant</i> , 2013 , 6, 29-37	14.4	72
222	Carlactone-independent seedling morphogenesis in Arabidopsis. <i>Plant Journal</i> , 2013 , 76, 1-9	6.9	73
221	Optimising seed broadcasting and greenstock planting for restoration in the Australian arid zone. Journal of Arid Environments, 2013 , 88, 226-235	2.5	22
220	Mycorrhizal preference promotes habitat invasion by a native Australian orchid: Microtis media. <i>Annals of Botany</i> , 2013 , 111, 409-18	4.1	33

219	Ecology. Hurdles and opportunities for landscape-scale restoration. <i>Science</i> , 2013 , 339, 526-7	33.3	264
218	Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia. <i>Virus Research</i> , 2013 , 171, 22-32	6.4	41
217	The nature of threat category changes in three Mediterranean biodiversity hotspots. <i>Biological Conservation</i> , 2013 , 157, 21-30	6.2	10
216	A systems approach to restoring degraded drylands. <i>Journal of Applied Ecology</i> , 2013 , 50, 730-739	5.8	93
215	Aquaculture of Posidonia australis Seedlings for Seagrass Restoration Programs: Effect of Sediment Type and Organic Enrichment on Growth. <i>Restoration Ecology</i> , 2013 , 21, 250-259	3.1	40
214	Seed Treatment Optimizes Benefits of Seed Bank Storage for Restoration-Ready Seeds: The Feasibility of Prestorage Dormancy Alleviation for Mine-Site Revegetation. <i>Restoration Ecology</i> , 2013 , 21, 186-192	3.1	33
213	Seed germination of the carnivorous plantByblis gigantea(Byblidaceae) is cued by warm stratification and karrikinolide. <i>Botanical Journal of the Linnean Society</i> , 2013 , 173, 143-152	2.2	8
212	Plant conservation 2013, 313-326		
211	Overcoming restoration thresholds and increasing revegetation success for a range of canopy species in a degraded urban Mediterranean-type woodland ecosystem. <i>Australian Journal of Botany</i> , 2013 , 61, 139	1.2	8
210	Mate-searching behaviour of common and rare wasps and the implications for pollen movement of the sexually deceptive orchids they pollinate. <i>PLoS ONE</i> , 2013 , 8, e59111	3.7	14
209	Exploring the molecular mechanism of karrikins and strigolactones. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2012 , 22, 3743-6	2.9	63
208	Low population genetic differentiation in the Orchidaceae: implications for the diversification of the family. <i>Molecular Ecology</i> , 2012 , 21, 5208-20	5.7	59
207	Cryopreservation of in vitro-propagated protocorms of Caladenia for terrestrial orchid conservation in Western Australia. <i>Botanical Journal of the Linnean Society</i> , 2012 , 170, 277-282	2.2	6
206	Solar irradiation of the seed germination stimulant karrikinolide produces two novel head-to-head cage dimers. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 4069-73	3.9	7
205	Caladenia virus A, an unusual new member of the family Potyviridae from terrestrial orchids in Western Australia. <i>Archives of Virology</i> , 2012 , 157, 2447-52	2.6	16
204	Soil physical strength rather than excess ethylene reduces root elongation of Eucalyptus seedlings in mechanically impeded sandy soils. <i>Plant Growth Regulation</i> , 2012 , 68, 261-270	3.2	10
203	Megasporogenesis and embryogenesis in three sympatric Posidonia seagrass species. <i>Aquatic Botany</i> , 2012 , 100, 1-7	1.8	3
202	Discovery of tetrasubstituted pyrazines as semiochemicals in a sexually deceptive orchid. <i>Journal of Natural Products</i> , 2012 , 75, 1589-94	4.9	39

201	Regulation of seed germination and seedling growth by chemical signals from burning vegetation. <i>Annual Review of Plant Biology</i> , 2012 , 63, 107-30	30.7	178
200	A ballistic pollen dispersal system influences pollination success and fruit-set pattern in pollinator-excluded environments for the endangered species Synaphea stenoloba (Proteaceae). <i>Botanical Journal of the Linnean Society</i> , 2012 , 170, 59-68	2.2	2
199	Limited carbon and mineral nutrient gain from mycorrhizal fungi by adult Australian orchids. <i>American Journal of Botany</i> , 2012 , 99, 1133-45	2.7	29
198	The discovery of 2-hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine: a semiochemical in orchid pollination. <i>Organic Letters</i> , 2012 , 14, 2576-8	6.2	44
197	A comparative assessment of approaches and outcomes for seagrass revegetation in Shark Bay and Florida Bay. <i>Marine and Freshwater Research</i> , 2012 , 63, 984	2.2	20
196	Sympatric species of Hibbertia (Dilleniaceae) vary in dormancy break and germination requirements: implications for classifying morphophysiological dormancy in Mediterranean biomes. <i>Annals of Botany</i> , 2012 , 109, 1111-23	4.1	17
195	Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. <i>Development (Cambridge)</i> , 2012 , 139, 1285-95	6.6	339
194	Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. <i>Nature Communications</i> , 2011 , 2, 360	17.4	70
193	Conservation. Restoration seed banksa matter of scale. <i>Science</i> , 2011 , 332, 424-5	33.3	220
192	Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. <i>Trends in Plant Science</i> , 2011 , 16, 4-12	13.1	223
191	Little evidence for fire-adapted plant traits in Mediterranean climate regions. <i>Trends in Plant Science</i> , 2011 , 16, 69-76	13.1	132
190	Response to Keeley et al.: Fire as an evolutionary pressure shaping plant traits. <i>Trends in Plant Science</i> , 2011 , 16, 405	13.1	17
189	The role of botanic gardens in the science and practice of ecological restoration. <i>Conservation Biology</i> , 2011 , 25, 265-75	6	38
188	Orchid biogeography and factors associated with rarity in a biodiversity hotspot, the Southwest Australian Floristic Region. <i>Journal of Biogeography</i> , 2011 , 38, 487-501	4.1	57
187	Climate change and plant regeneration from seed. Global Change Biology, 2011, 17, 2145-2161	11.4	533
186	Do mycorrhizal symbioses cause rarity in orchids?. <i>Journal of Ecology</i> , 2011 , 99, 858-869	6	81
185	Failure of sexual reproduction found in micropropagated critically endangered plants prior to reintroduction: a cautionary tale. <i>Botanical Journal of the Linnean Society</i> , 2011 , 165, 278-284	2.2	2
184	F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 8897-902	11.5	312

183	Cryopreservation of threatened native Australian speciesaWhat have we learned and where to from here?. <i>In Vitro Cellular and Developmental Biology - Plant</i> , 2011 , 47, 17-25	2.3	32
182	Biotechnology for saving rare and threatened flora in a biodiversity hotspot. <i>In Vitro Cellular and Developmental Biology - Plant</i> , 2011 , 47, 188-200	2.3	26
181	Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 1195-8	5.7	25
180	The synthesis and biological evaluation of labelled karrikinolides for the elucidation of the mode of action of the seed germination stimulant. <i>Tetrahedron</i> , 2011 , 67, 152-157	2.4	14
179	An Unorthodox Approach to Forest RestorationResponse. <i>Science</i> , 2011 , 333, 36-37	33.3	1
178	Coastal Plants 2011 ,		6
177	Dormancy, germination and seed bank storage: a study in support of ex situ conservation of macrophytes of southwest Australian temporary pools. <i>Freshwater Biology</i> , 2010 , 55, 1118-1129	3.1	33
176	Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. <i>Molecular Ecology</i> , 2010 , 19, 3226-42	5.7	108
175	Comparative longevity of Australian orchid (Orchidaceae) seeds under experimental and low temperature storage conditions. <i>Botanical Journal of the Linnean Society</i> , 2010 , 164, 26-41	2.2	39
174	PARASITES, THEIR RELATIONSHIPS AND THE DISINTEGRATION OF SCROPHULARIACEAE SENSU LATO. <i>Curtisls Botanical Magazine</i> , 2010 , 26, 286-313	0.1	11
173	Comparative longevity and low-temperature storage of seeds of Hydatellaceae and temporary pool species of south-west Australia. <i>Australian Journal of Botany</i> , 2010 , 58, 327	1.2	12
172	Buoyancy, salt tolerance and germination of coastal seeds: implications for oceanic hydrochorous dispersal. <i>Functional Plant Biology</i> , 2010 , 37, 1175	2.7	28
171	Pollination ecology and the possible impacts of environmental change in the Southwest Australian Biodiversity Hotspot. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2010 , 365, 517-28	5.8	55
170	Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 709	5-100	166
169	Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid. <i>Annals of Botany</i> , 2010 , 105, 1063-70	4.1	32
168	Structure-activity relationship of karrikin germination stimulants. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 8612-7	5.7	29
167	A new type of specialized morphophysiological dormancy and seed storage behaviour in Hydatellaceae, an early-divergent angiosperm family. <i>Annals of Botany</i> , 2010 , 105, 1053-61	4.1	23
166	Development of an in vitro propagation protocol for ex situ conservation of two critically endangered species of Commersonia (Malvaceae) from Western Australia. <i>Australian Journal of Botany</i> 2010 58 565	1.2	4

165	Characterisation of polymorphic microsatellite markers isolated from Drakaea glyptodon Fitz. (Orchidaceae). <i>Conservation Genetics Resources</i> , 2010 , 2, 291-294	0.8	2
164	Discrimination and identification of morphotypes of Banksia integrifolia (Proteaceae) by an Artificial Neural Network (ANN), based on morphological and fractal parameters of leaves and flowers. <i>Taxon</i> , 2009 , 58, 925-933	0.8	10
163	An introduction to Caladenia R.Br Australasia's jewel among terrestrial orchids. <i>Australian Journal of Botany</i> , 2009 , 57, ii	1.2	3
162	Biology and natural history of Caladenia. Australian Journal of Botany, 2009, 57, 247	1.2	19
161	Identification and characterization of the water gap in the physically dormant seeds of Dodonaea petiolaris: a first report for Sapindaceae. <i>Annals of Botany</i> , 2009 , 104, 833-44	4.1	21
160	Seed dormancy and germination in the Australian baobab, Adansonia gregorii F. Muell <i>Seed Science Research</i> , 2009 , 19, 261-266	1.3	9
159	Genetic diversity in fragmented populations of the critically endangered spider orchid Caladenia huegelii: implications for conservation. <i>Conservation Genetics</i> , 2009 , 10, 1199-1208	2.6	39
158	Characterisation of polymorphic microsatellite markers in the widespread Australian seagrass, Posidonia australis Hook. f. (Posidoniaceae), with cross-amplification in the sympatric P. sinuosa. <i>Conservation Genetics Resources</i> , 2009 , 1, 273-276	0.8	16
157	Ecophysiology of Eucalyptus marginata and Corymbia calophylla in decline in an urban parkland. <i>Austral Ecology</i> , 2009 , 34, 499-507	1.5	8
156	Time to future-proof plants in storage. <i>Nature</i> , 2009 , 462, 721	50.4	12
156 155	Time to future-proof plants in storage. <i>Nature</i> , 2009 , 462, 721 Germination behaviour of Astroloma xerophyllum (Ericaceae), a species with woody indehiscent endocarps. <i>Botanical Journal of the Linnean Society</i> , 2009 , 160, 299-311	50.4	9
	Germination behaviour ofAstroloma xerophyllum(Ericaceae), a species with woody indehiscent	· ·	
155	Germination behaviour of Astroloma xerophyllum (Ericaceae), a species with woody indehiscent endocarps. <i>Botanical Journal of the Linnean Society</i> , 2009 , 160, 299-311 The role of after-ripening in promoting germination of arid zone seeds: a study on six Australian	2.2	9
155 154	Germination behaviour of Astroloma xerophyllum (Ericaceae), a species with woody indehiscent endocarps. <i>Botanical Journal of the Linnean Society</i> , 2009 , 160, 299-311 The role of after-ripening in promoting germination of arid zone seeds: a study on six Australian species. <i>Botanical Journal of the Linnean Society</i> , 2009 , 161, 411-421 Seed moisture content affects afterripening and smoke responsiveness in three sympatric	2.2	9 27
155 154 153	Germination behaviour of Astroloma xerophyllum (Ericaceae), a species with woody indehiscent endocarps. <i>Botanical Journal of the Linnean Society</i> , 2009 , 160, 299-311 The role of after-ripening in promoting germination of arid zone seeds: a study on six Australian species. <i>Botanical Journal of the Linnean Society</i> , 2009 , 161, 411-421 Seed moisture content affects afterripening and smoke responsiveness in three sympatric Australian native species from fire-prone environments. <i>Austral Ecology</i> , 2009 , 34, 866-877 Ecophysiology of Species with Distinct Leaf Morphologies: Effects of Plastic and Shadecloth Tree	2.2	9 27 27
155 154 153 152	Germination behaviour of Astroloma xerophyllum (Ericaceae), a species with woody indehiscent endocarps. <i>Botanical Journal of the Linnean Society</i> , 2009 , 160, 299-311 The role of after-ripening in promoting germination of arid zone seeds: a study on six Australian species. <i>Botanical Journal of the Linnean Society</i> , 2009 , 161, 411-421 Seed moisture content affects afterripening and smoke responsiveness in three sympatric Australian native species from fire-prone environments. <i>Austral Ecology</i> , 2009 , 34, 866-877 Ecophysiology of Species with Distinct Leaf Morphologies: Effects of Plastic and Shadecloth Tree Guards. <i>Restoration Ecology</i> , 2009 , 17, 33-41	2.2 2.2 1.5	9 27 27 30
155 154 153 152 151	Germination behaviour of Astroloma xerophyllum (Ericaceae), a species with woody indehiscent endocarps. <i>Botanical Journal of the Linnean Society</i> , 2009 , 160, 299-311 The role of after-ripening in promoting germination of arid zone seeds: a study on six Australian species. <i>Botanical Journal of the Linnean Society</i> , 2009 , 161, 411-421 Seed moisture content affects afterripening and smoke responsiveness in three sympatric Australian native species from fire-prone environments. <i>Austral Ecology</i> , 2009 , 34, 866-877 Ecophysiology of Species with Distinct Leaf Morphologies: Effects of Plastic and Shadecloth Tree Guards. <i>Restoration Ecology</i> , 2009 , 17, 33-41 Pollination and restoration. <i>Science</i> , 2009 , 325, 571-3	2.2 2.2 1.5 3.1	9 27 27 30 134

147	Karrikins: A new family of plant growth regulators in smoke. <i>Plant Science</i> , 2009 , 177, 252-256	5.3	143
146	Seed biology of Australian arid zone species: Germination of 18 species used for rehabilitation. <i>Journal of Arid Environments</i> , 2009 , 73, 617-625	2.5	45
145	Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. <i>Plant Physiology</i> , 2009 , 149, 863-73	6.6	195
144	Terrestrial orchid conservation in the age of extinction. <i>Annals of Botany</i> , 2009 , 104, 543-56	4.1	380
143	Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 9475-80	5.7	105
142	Propagation and reintroduction of Caladenia. Australian Journal of Botany, 2009, 57, 373	1.2	27
141	Phyllometric parameters and artificial neural networks for the identification of Banksia accessions. <i>Australian Systematic Botany</i> , 2009 , 22, 31	1	3
140	KARRIKINOLIDE PA PHYTOREACTIVE COMPOUND DERIVED FROM SMOKE WITH APPLICATIONS IN HORTICULTURE, ECOLOGICAL RESTORATION AND AGRICULTURE. <i>Acta Horticulturae</i> , 2009 , 155-170	0.3	91
139	Germinability of seeds stored in capsules on plants of two myrtaceous shrubs: differences among age cohorts and between species. <i>Australian Journal of Botany</i> , 2009 , 57, 495	1.2	3
138	The novel use of commercial enzymes to depulp the fruits and seeds of selected Australian native species for seed storage and germination. <i>Ecological Management and Restoration</i> , 2008 , 9, 230-232	1.4	1
137	Orchids. Current Biology, 2008, 18, R325-9	6.3	56
136	Seed germination of Solanum spp. (Solanaceae) for use in rehabilitation and commercial industries. <i>Australian Journal of Botany</i> , 2008 , 56, 333	1.2	24
135	Occurrence of physical dormancy in seeds of Australian Sapindaceae: a survey of 14 species in nine genera. <i>Annals of Botany</i> , 2008 , 101, 1349-62	4.1	25
134	Recent advances in restoration ecology, with a focus on the Banksia woodland and the smoke germination tool. <i>Australian Journal of Botany</i> , 2007 , 55, 375	1.2	39
133	Characterization of microsatellite loci in the endangered grand spider orchid Caladenia huegelii (Orchidaceae). <i>Molecular Ecology Notes</i> , 2007 , 7, 1141-1143		6
132	Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. <i>Mycological Research</i> , 2007 , 111, 51-61		132
131	Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. <i>Plant and Soil</i> , 2007 , 298, 113	3 -4 : 2 4	98
130	Reproductive success in a reintroduced population of a critically endangered shrub, Symonanthus bancroftii (Solanaceae). <i>Australian Journal of Botany</i> , 2007 , 55, 425	1.2	4

129	Current perspectives in plant conservation biology. Australian Journal of Botany, 2007, 55, 187	1.2	29
128	Introduction, growth and persistence in situ of orchid mycorrhizal fungi. <i>Australian Journal of Botany</i> , 2007 , 55, 665	1.2	9
127	Seed dormancy and germination stimulation syndromes for Australian temperate species. <i>Australian Journal of Botany</i> , 2007 , 55, 336	1.2	143
126	The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. <i>Australian Journal of Botany</i> , 2007 , 55, 345	1.2	38
125	Preparation of 2H-furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 2189-94	5.7	65
124	Changes in the structure and species dominance in vegetation over 60 years in an urban bushland remnant. <i>Pacific Conservation Biology</i> , 2007 , 13, 158	1.2	18
123	Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. <i>Seed Science Research</i> , 2006 , 16, 29-35	1.3	69
122	Physical dormancy in the endemic Australian genus Stylobasium, a first report for the family Surianaceae (Fabales). <i>Seed Science Research</i> , 2006 , 16, 229-232	1.3	38
121	New methods to improve symbiotic propagation of temperate terrestrial orchid seedlings from axenic culture to soil. <i>Australian Journal of Botany</i> , 2006 , 54, 367	1.2	33
120	Ex Situ Plant Conservation and Beyond. <i>BioScience</i> , 2006 , 56, 525	5.7	66
119	Ecophysiology of seed dormancy in the Australian endemic species Acanthocarpus preissii (Dasypogonaceae). <i>Annals of Botany</i> , 2006 , 98, 1137-44	4.1	29
118	Post-fire germination: The effect of smoke on seeds of selected species from the central Mediterranean basin. <i>Forest Ecology and Management</i> , 2006 , 221, 306-312	3.9	65
117	Conservation biology of the rare species Conospermum undulatum and Macarthuria keigheryi in an urban bushland remnant. <i>Australian Journal of Botany</i> , 2006 , 54, 583	1.2	16
116	Combinational dormancy in seeds of the Western Australian endemic species Diplopeltis huegelii (Sapindaceae). <i>Australian Journal of Botany</i> , 2006 , 54, 565	1.2	20
115	In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. <i>Australian Journal of Botany</i> , 2006 , 54, 375	1.2	47
114	Enhancing the germination of three fodder shrubs (Atriplex amnicola, A. nummularia, A. undulata; Chenopodiaceae): implications for the optimisation of field establishment. <i>Australian Journal of Agricultural Research</i> , 2006 , 57, 1279		15
113	Survival of transplanted terrestrial orchid seedlings in urban bushland habitats with high or low weed cover. <i>Australian Journal of Botany</i> , 2006 , 54, 383	1.2	30
112	Molecular markers detect multiple origins of Agonis flexuosa (Myrtaceae) plants used in urban bushland restoration. <i>Ecological Management and Restoration</i> , 2006 , 7, 234-235	1.4	4

(2004-2006)

111	Influence of Polymer Seed Coatings, Soil Raking, and Time of Sowing on Seedling Performance in Post-Mining Restoration. <i>Restoration Ecology</i> , 2006 , 14, 267-277	3.1	52
110	Rapid genetic delineation of local provenance seed-collection zones for effective rehabilitation of an urban bushland remnant. <i>Austral Ecology</i> , 2006 , 31, 164-175	1.5	27
109	Comparative enhancement of germination and vigor in seed and somatic embryos by the smoke chemical 3-methyl-2H-furo[2,3-C]pyran-2-one in Baloskion tetraphyllum (Restionaceae). <i>In Vitro Cellular and Developmental Biology - Plant</i> , 2006 , 42, 305-308	2.3	15
108	Structural Analysis of a Potent Seed Germination Stimulant. <i>Australian Journal of Chemistry</i> , 2005 , 58, 505	1.2	10
107	Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one. <i>Tetrahedron Letters</i> , 2005 , 46, 5719-5721	2	86
106	In vitro propagation of Eucalyptus phylacis L. Johnson and K. Hill., A critically endangered relict from Western Australia. <i>In Vitro Cellular and Developmental Biology - Plant</i> , 2005 , 41, 812-815	2.3	21
105	The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). <i>New Phytologist</i> , 2005 , 165, 887-98	9.8	68
104	Seed Dormancy and Germination Responses of Nine Australian Fire Ephemerals. <i>Plant and Soil</i> , 2005 , 277, 345-358	4.2	43
103	The changing window of conditions that promotes germination of two fire ephemerals, Actinotus leucocephalus (Apiaceae) and Tersonia cyathiflora (Gyrostemonaceae). <i>Annals of Botany</i> , 2005 , 96, 1225	5- 3 - 5	55
102	Dormancy release in Australian fire ephemeral seeds during burial increases germination response to smoke water or heat. <i>Seed Science Research</i> , 2005 , 15, 339-348	1.3	43
101	Physical dormancy in seeds of six genera of Australian Rhamnaceae. <i>Seed Science Research</i> , 2005 , 15, 51-58	1.3	42
100	Survival of four accessions of Anigozanthos manglesii (haemodoraceae) seeds following exposure to liquid nitrogen. <i>Cryo-Letters</i> , 2005 , 26, 121-30	0.3	2
99	High-frequency somatic embryogenesis of koala fern (Baloskion tetraphyllum, restionaceae). <i>In Vitro Cellular and Developmental Biology - Plant</i> , 2004 , 40, 303-310	2.3	10
98	Somatic Embryogenesis for Mass Propagation of Ericaceae âlʿA Case Study with Leucopogon verticillatus. <i>Plant Cell, Tissue and Organ Culture</i> , 2004 , 76, 137-146	2.7	9
97	The Role of Antioxidants for Initiation of Somatic Embryos with Conostephium pendulum (Ericaceae). <i>Plant Cell, Tissue and Organ Culture</i> , 2004 , 78, 247-252	2.7	19
96	Molecular weight of a germination-enhancing compound in smokeâ Plant and Soil, 2004, 263, 1-4	4.2	10
95	A compound from smoke that promotes seed germination. <i>Science</i> , 2004 , 305, 977	33.3	474
94	The role of cytokinins and thidiazuron in the stimulation of somatic embryogenesis in key members of the Restionaceae. <i>Australian Journal of Botany</i> , 2004 , 52, 257	1.2	19

93	Water sorption characteristics of seeds of four Western Australian species. <i>Australian Journal of Botany</i> , 2003 , 51, 85	1.2	10
92	Benzoic acid induces tolerance to biotic stress caused by Phytophthora cinnamomi in Banksia attenuata. <i>Plant Growth Regulation</i> , 2003 , 41, 89-91	3.2	21
91	Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. <i>Plant Growth Regulation</i> , 2003 , 39, 77-81	3.2	65
90	A molecular approach to provenance delineation for the restoration of hummock grasslands (Triodia spp.) in arid-tropical Australia. <i>Ecological Management and Restoration</i> , 2003 , 4, S60-S68	1.4	5
89	Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. <i>Mycological Research</i> , 2003 , 107, 1210-20		82
88	Seed ageing of four Western Australian species in relation to storage environment and seed antioxidant activity. <i>Seed Science Research</i> , 2003 , 13, 155-165	1.3	33
87	Orchid Conservation and Mycorrhizal Associations 2002 , 195-226		5
86	Plant Conservation and Biodiversity: The Place of Microorganisms 2002 , 1-18		
85	Rapid Genetic Decline in a Translocated Population of the Endangered Plant Grevillea scapigera. <i>Conservation Biology</i> , 2002 , 16, 986-994	6	59
84	Smoke, Mulch, and Seed Broadcasting Effects on Woodland Restoration in Western Australia. <i>Restoration Ecology</i> , 2002 , 10, 185-194	3.1	48
83	. Plant Growth Regulation, 2002 , 36, 31-39	3.2	3
82	Induction of tuberisation in vitro with jasmonic acid and sucrose in an Australian terrestrial orchid, Pterostylis sanguinea. <i>Plant Growth Regulation</i> , 2002 , 36, 253-260	3.2	16
81	Conservation genetics and implications for restoration of Hemigenia exilis (Lamiaceae), a serpentine endemic from Western Australia. <i>Biological Conservation</i> , 2002 , 107, 37-45	6.2	33
80	Ericoid Mycorrhizas in Plant Communities 2002 , 227-239		
79	Cryostorage of Somatic Tissues of Endangered Australian Species. <i>Biotechnology in Agriculture and Forestry</i> , 2002 , 357-372		9
78	Cryopreservation of Australian Species âlThe Role of Plant Growth Regulators. <i>Biotechnology in Agriculture and Forestry</i> , 2002 , 373-390		4
77	Conservation genetics of the rare and endangered Leucopogon obtectus (Ericaceae). <i>Molecular Ecology</i> , 2001 , 10, 2389-96	5.7	97
76	Exudation of carboxylates in Australian Proteaceae: chemical composition. <i>Plant, Cell and Environment</i> , 2001 , 24, 891-904	8.4	106

(2000-2001)

75	Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. <i>New Phytologist</i> , 2001 , 152, 511-520	9.8	149	
74	A RE-EVALUATION OF CINEOLE AS A GERMINATION PROMOTER OF LACTUCA SATIVA L. GRAND RAPIDS. <i>Analytical Letters</i> , 2001 , 34, 2221-2225	2.2	4	
73	Interaction of soil burial and smoke on germination patterns in seeds of selected Australian native plants. <i>Seed Science Research</i> , 2001 , 11, 69-76	1.3	69	
72	Cryopreservation of Shoot Tips from Six Endangered Australian Species using a Modified Vitrification Protocol. <i>Annals of Botany</i> , 2001 , 87, 371-378	4.1	34	
71	Spatial and Developmental Variation in Seed Dormancy Characteristics in the Fire-responsive Species Anigozanthos manglesii(Haemodoraceae) from Western Australia. <i>Annals of Botany</i> , 2001 , 88, 19-26	4.1	28	
70	The Interaction of Heat and Smoke in the Release of Seed Dormancy in Seven Species from Southwestern Western Australia. <i>Annals of Botany</i> , 2001 , 88, 259-265	4.1	83	
69	Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. <i>Australian Journal of Botany</i> , 2001 , 49, 619	1.2	66	
68	Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. <i>Plant Science</i> , 2001 , 160, 489-497	5.3	42	
67	Genetic fidelity and viability of Anigozanthos viridis following tissue culture, cold storage and cryopreservation. <i>Plant Science</i> , 2001 , 161, 1099-1106	5.3	40	
66	The impact of soil disturbance on root development in woodland communities in Western Australia. <i>Australian Journal of Botany</i> , 2001 , 49, 169	1.2	36	
65	Effects of plant growth regulators on survival and recovery growth following cryopreservation. <i>Cryo-Letters</i> , 2001 , 22, 163-74	0.3	3	
64	Cryopreservation of Anigozanthos viridis ssp. viridis and related taxa from the south-west of Western Australia. <i>Australian Journal of Botany</i> , 2000 , 48, 739	1.2	16	
63	Topsoil Handling and Storage Effects on Woodland Restoration in Western Australia. <i>Restoration Ecology</i> , 2000 , 8, 196-208	3.1	96	
62	Comparative effects of different smoke treatments on germination of Australian native plants. <i>Austral Ecology</i> , 2000 , 25, 610-615	1.5	41	
61	Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. <i>Plant Growth Regulation</i> , 2000 , 30, 157-161	3.2	400	
60	Micropropagation of the critically endangered Western Australian species, Symonanthus bancroftii (F. Muell.) L. Haegi (Solanaceae). <i>Plant Cell, Tissue and Organ Culture</i> , 2000 , 63, 23-29	2.7	15	
59	Haustorial Development and Growth Benefit to Seedlings of the Root Hemiparasitic Tree Nuytsia floribunda (Labill.) R.Br. in Association with Various Hosts. <i>Annals of Botany</i> , 2000 , 85, 733-740	4.1	16	
58	Seed Coat Dormancy in Two Species of Grevillea(Proteaceae). <i>Annals of Botany</i> , 2000 , 86, 771-775	4.1	22	

57	Moisture content influences survival of cryostored seed of Banksia ashbyi (Proteaceae). <i>Australian Journal of Botany</i> , 2000 , 48, 581	1.2	2
56	Comparative effects of different smoke treatments on germination of Australian native plants 2000 , 25, 610		3
55	Cryopreservation of the australian species Macropidia fuliginosa (Haemodoraceae) by vitrification. <i>Cryo-Letters</i> , 2000 , 21, 379-388	0.3	8
54	Smoke-saturated water promotes somatic embryogenesis in geranium. <i>Plant Growth Regulation</i> , 1999 , 28, 95-99	3.2	39
53	Conservation genetics and clonality in two critically endangered eucalypts from the highly endemic south-western Australian flora. <i>Biological Conservation</i> , 1999 , 88, 321-331	6.2	51
52	Germination of Four Species of Native Western Australian Plants using Plant-derived Smoke. <i>Australian Journal of Botany</i> , 1999 , 47, 207	1.2	42
51	For everything a season: Smoke-induced seed germination and seedling recruitment in a Western Australian Banksia woodland. <i>Austral Ecology</i> , 1998 , 23, 111-120	1.5	70
50	Seed Ageing and Smoke: Partner Cuesin the Amelioration of Seed Dormancyin Selected Australian Native Species. <i>Australian Journal of Botany</i> , 1997 , 45, 783	1.2	138
49	Reproductive Potential of Obligate Seeder and Resprouter Herbaceous Perennial Monocots (Restionaceae, Anarthriaceae, Ecdeiocoleaceae) from South-western Western Australia. <i>Australian Journal of Botany</i> , 1997 , 45, 771	1.2	18
48	DNA fingerprinting of Eucalyptus graniticola: a critically endangered relict species or a rare hybrid?. <i>Heredity</i> , 1997 , 79, 310-318	3.6	32
47	Smoke Enhanced Seed Germination for Mine Rehabilitation in the Southwest of Western Australia. <i>Restoration Ecology</i> , 1997 , 5, 191-203	3.1	129
46	Effect of habitat disturbance on inoculum potential of ericoid endophytes of Western Australian heaths (Epacridaceae). <i>New Phytologist</i> , 1997 , 135, 739-744	9.8	24
45	Micropropagation of Caustis dioica (Chinese Puzzle). <i>Biotechnology in Agriculture and Forestry</i> , 1997 , 220-231		
44	Relationships Between Fire Response, Morphology, Root Anatomy and Starch Distribution in South-west Australian Epacridaceae. <i>Annals of Botany</i> , 1996 , 77, 357-364	4.1	66
43	Pectic Zymograms and Water Stress Tolerance of Endophytic Fungi Isolated from Western Australian Heaths (Epacridaceae). <i>Annals of Botany</i> , 1996 , 77, 399-404	4.1	15
42	Inoculum potential of ericoid endophytes of Western Australian heaths (Epacridaceae). <i>New Phytologist</i> , 1996 , 134, 665-672	9.8	5
41	In vitro propagation of Western Australian Rushes (Restionaceae and related families) by embryo culture. Part 1. In vitro embryo growth. <i>Plant Cell, Tissue and Organ Culture</i> , 1995 , 41, 107-113	2.7	17
40	In vitro propagation of Western Australian Rushes (Restionaceae and related families) by embryo culture. Part 2. Micropropagation. <i>Plant Cell, Tissue and Organ Culture</i> , 1995 , 41, 115-124	2.7	7

39	The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. <i>Oecologia</i> , 1995 , 101, 185-192	2.9	353
38	Use of RAPD analysis in devising conservation strategies for the rare and endangered Grevillea scapigera (Proteaceae). <i>Molecular Ecology</i> , 1995 , 4, 321-9	5.7	115
37	Methods for ex Vitro Germination of Australian Terrestrial Orchids. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 1995 , 30, 1445-1446	2.4	10
36	Response of mycorrhizal seedlings of SW Australian sandplain Epacridaceae to added nitrogen and phosphorus. <i>Journal of Experimental Botany</i> , 1994 , 45, 779-790	7	15
35	Towards integrated conservation of Australian endangered plantsâthe Western Australian model. <i>Biodiversity and Conservation</i> , 1994 , 3, 148-159	3.4	14
34	Effect of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria. <i>Plant and Soil</i> , 1994 , 159, 291-295	4.2	38
33	Seed bank patterns in Restionaceae and Epacridaceae after wildfire in kwongan in southwestern Australia. <i>Journal of Vegetation Science</i> , 1994 , 5, 5-12	3.1	43
32	Ericoid endophytes of Western Australian heaths (Epacridaceae). New Phytologist, 1994 , 127, 557-566	9.8	55
31	Cryopreservation for Seedbanking of Australian Species. <i>Annals of Botany</i> , 1994 , 74, 541-546	4.1	27
30	Identification and characterisation of bacteria associated with Western Australian orchids. <i>Soil Biology and Biochemistry</i> , 1994 , 26, 137-142	7.5	18
29	Genetic diversity and restoration of a recalcitrant clonal sedge (Tetraria capillaris Cyperaceae). <i>Biodiversity and Conservation</i> , 1994 , 3, 279-294	3.4	11
28	Occurrence of Vesicular Mycorrhizal Fungi in Dryland Species of Restionaceae and Cyperaceae From South-West Western Australia. <i>Australian Journal of Botany</i> , 1993 , 41, 733	1.2	31
27	Cryopreservation of seed of Western Australian native species. <i>Biodiversity and Conservation</i> , 1993 , 2, 594-602	3.4	32
26	Micropropagation of an Australian terrestrial orchid Diuris longifolia R. Br. <i>Australian Journal of Experimental Agriculture</i> , 1992 , 32, 131		14
25	Cryopreservation of Shoot-Tips of Grevillea scapigera (Proteaceae): a Rare and Endangered Plant From Western Australia. <i>Australian Journal of Botany</i> , 1992 , 40, 305	1.2	20
24	In vitro propagation of Chinese Puzzle (Caustis dioica Cyperaceae)âll commercial sedge species from Western Australia. <i>Plant Cell, Tissue and Organ Culture</i> , 1992 , 30, 65-67	2.7	13
23	Aeration: A simple method to control vitrification and improve in vitro culture of rare australian plants. <i>In Vitro Cellular and Developmental Biology - Plant</i> , 1992 , 28, 192-196	2.3	9
22	In Vitro Propagation of the Rare and Endangered Grevillea scapigera (Proteaceae). <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 1992 , 27, 261-262	2.4	18

21	Micropropagation of the Pineapple Lily, Dasypogon hookeri J. Drumm <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 1992 , 27, 369	2.4	2
20	Contrasting Growth and Morphological Characteristics of Fire-Sensitive (Obligate Seeder) and Fire-Resistant (Resprouter) Species of Restionaceae (S Hemisphere Restiads) From South-Western Western-Australia. <i>Australian Journal of Botany</i> , 1991 , 39, 505	1.2	55
19	Propagation of yellow bells (Geleznowia verrucosa Turcz., Rutaceae) from seed. <i>Australian Journal of Agricultural Research</i> , 1991 , 42, 901		7
18	Phenology of Growth and Resource Deployment in Alexgeorgea nitens (Nees) Johnson and Briggs (Restionaceae), a Clonal Species From South-Western Western Australia. <i>Australian Journal of Botany</i> , 1990 , 38, 543	1.2	10
17	Seed viability and embryo decline in Geleznowia verrucosa Turcz. (Rutaceae). <i>Scientia Horticulturae</i> , 1990 , 45, 149-157	4.1	9
16	Comparative Morphology, Anatomy, Phenology and Reproductive Biology of Alexgeorgea Spp (Restionaceae) From South-Western Western Australia. <i>Australian Journal of Botany</i> , 1990 , 38, 523	1.2	16
15	Anomalous secondary thickening in roots of Daviesia (Fabaceae) and its taxonomic significance. <i>Botanical Journal of the Linnean Society</i> , 1989 , 99, 175-193	2.2	7
14	In vitro propagation of Leucopogon obtectus Benth. (Epacridaceae). <i>Plant Cell, Tissue and Organ Culture</i> , 1989 , 19, 77-84	2.7	9
13	Interaction of soil bacteria, mycorrhizal fungi and orchid seed in relation to germination of Australian orchids. <i>New Phytologist</i> , 1989 , 112, 429-435	9.8	50
12	Phenology, Reproductive-Biology and Seed Development in Four Rush and Sedge Species From Western Australia. <i>Australian Journal of Botany</i> , 1988 , 36, 711	1.2	29
11	Variability in the Resistance of Banksia L.f. Species to Phytophthora cinnamomi Rands. <i>Australian Journal of Botany</i> , 1985 , 33, 629	1.2	35
10	Storage reserves of the seed-like, aestivating organs of Geophytes inhabiting granite outcrops in south-western Australia <i>Australian Journal of Botany</i> , 1983 , 31, 85	1.2	18
9	Nitrogen Nutrition of the Tuberous Sundew Drosera erythrorhiza Lindl. With Special Reference to Catch of Arthropod Fauna by Its Glandular Leaves. <i>Australian Journal of Botany</i> , 1980 , 28, 283	1.2	69
8	Mineral Nutrition of Drosera erythrorhiza Lindl. With Special Reference to Its Tuberous Habit. <i>Australian Journal of Botany</i> , 1978 , 26, 455	1.2	25
7	Phenology, morphology and reproductive biology of the tuberous sundew, Drosera erythrorhiza Lindl. <i>Australian Journal of Botany</i> , 1978 , 26, 441	1.2	25
6	Hydrolysis of activated esters catalyzed by L-histidine graft copolymers. <i>Journal of Polymer Science:</i> Polymer Chemistry Edition, 1977 , 15, 1863-1868		11
5	Seed quality and the true price of native seed for mine site restoration. Restoration Ecology,e13638	3.1	0
4	A global review of determinants of native bee assemblages in urbanised landscapes. <i>Insect Conservation and Diversity</i> ,	3.8	2

LIST OF PUBLICATIONS

3	Stockpiling disrupts the biological integrity of topsoil for ecological restoration. <i>Plant and Soil</i> ,1	4.2	0	
2	Microbial inoculation to improve plant performance in mine-waste substrates: A test using pigeon pea (Cajanus cajan). Land Degradation and Development,	4.4	3	
1	The influence of environmental drivers and restoration intervention methods on postmine restoration trajectories. <i>Restoration Ecology</i> ,e13503	3.1	1	