## Paul B Krummel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4733947/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6, 813-823.                                                                                            | 5.4  | 1,649     |
| 2  | The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.                                                                                               | 3.7  | 1,199     |
| 3  | The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.                                                                                                  | 3.7  | 824       |
| 4  | A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.                                                                              | 13.7 | 814       |
| 5  | The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 2020, 13, 3571-3605.                          | 1.3  | 539       |
| 6  | Renewed growth of atmospheric methane. Geophysical Research Letters, 2008, 35, .                                                                                                   | 1.5  | 439       |
| 7  | Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 2017, 10, 2057-2116.                                                      | 1.3  | 350       |
| 8  | CO <sub>2</sub> surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. Journal of Geophysical Research, 2010, 115, .           | 3.3  | 276       |
| 9  | Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophysical<br>Research Letters, 2005, 32, n/a-n/a.                                       | 1.5  | 267       |
| 10 | Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics, 2011, 11, 3689-3700.                                                    | 1.9  | 252       |
| 11 | Global CO <sub>2</sub> fluxes estimated from GOSAT retrievals of total<br>column CO <sub>2</sub> . Atmospheric Chemistry and Physics, 2013, 13,<br>8695-8717.                      | 1.9  | 251       |
| 12 | Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5373-5377.                     | 3.3  | 231       |
| 13 | Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience, 2012, 5, 261-265.                                                           | 5.4  | 220       |
| 14 | History of chemically and radiatively important atmospheric gases from the Advanced Global<br>Atmospheric Gases Experiment (AGAGE). Earth System Science Data, 2018, 10, 985-1018. | 3.7  | 179       |
| 15 | Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature, 2019, 569, 546-550.                                                                     | 13.7 | 148       |
| 16 | Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmospheric Chemistry and Physics, 2010, 10, 5145-5164.                    | 1.9  | 141       |
| 17 | History of atmospheric SF <sub>6</sub> from 1973 to 2008. Atmospheric<br>Chemistry and Physics, 2010, 10, 10305-10320.                                                             | 1.9  | 136       |
| 18 | In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences. Journal of Geophysical Research, 2002, 107, ACH 20-1.            | 3.3  | 135       |

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Observational evidence for interhemispheric hydroxyl-radical parity. Nature, 2014, 513, 219-223.                                                                                                                                                                         | 13.7 | 121       |
| 20 | Variability of Optical Depth and Effective Radius in Marine Stratocumulus Clouds. Journals of the Atmospheric Sciences, 2001, 58, 2912-2926.                                                                                                                             | 0.6  | 118       |
| 21 | Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods. Atmospheric Chemistry and Physics, 2014, 14, 3855-3864.                                                                                                       | 1.9  | 116       |
| 22 | Observations of Ice Nucleating Particles Over Southern Ocean Waters. Geophysical Research Letters, 2018, 45, 11,989.                                                                                                                                                     | 1.5  | 110       |
| 23 | Variations in global methane sources and sinks during 1910–2010. Atmospheric Chemistry and Physics, 2015, 15, 2595-2612.                                                                                                                                                 | 1.9  | 108       |
| 24 | Re-evaluation of the lifetimes of the major CFCs and<br>CH <sub>3</sub> CCl <sub>3</sub> using<br>atmospheric trends. Atmospheric Chemistry and Physics, 2013, 13, 2691-2702.                                                                                            | 1.9  | 105       |
| 25 | Recent and future trends in synthetic greenhouse gas radiative forcing. Geophysical Research Letters, 2014, 41, 2623-2630.                                                                                                                                               | 1.5  | 102       |
| 26 | Bidirectional mixing in an ACE 1 marine boundary layer overlain by a second turbulent layer. Journal of Geophysical Research, 1998, 103, 16411-16432.                                                                                                                    | 3.3  | 99        |
| 27 | Rapid growth of hydrofluorocarbon 134a and hydrochlorofluorocarbons 141b, 142b, and 22 from<br>Advanced Global Atmospheric Gases Experiment (AGAGE) observations at Cape Grim, Tasmania, and<br>Mace Head, Ireland. Journal of Geophysical Research, 2004, 109, n/a-n/a. | 3.3  | 96        |
| 28 | Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements. Atmospheric Chemistry and Physics, 2013, 13, 5697-5713.                                                                                             | 1.9  | 94        |
| 29 | Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork<br>measurements, a chemical transport model, and an inverse method. Journal of Geophysical Research,<br>2008, 113, .                                                              | 3.3  | 92        |
| 30 | Rapid increase in ozone-depleting chloroform emissions from China. Nature Geoscience, 2019, 12, 89-93.                                                                                                                                                                   | 5.4  | 92        |
| 31 | Global and regional emissions estimates for N <sub>2</sub> O. Atmospheric<br>Chemistry and Physics, 2014, 14, 4617-4641.                                                                                                                                                 | 1.9  | 91        |
| 32 | On the consistency between global and regional methane emissions inferred from SCIAMACHY,<br>TANSO-FTS, IASI and surface measurements. Atmospheric Chemistry and Physics, 2014, 14, 577-592.                                                                             | 1.9  | 91        |
| 33 | Global CO <sub>2</sub> fluxes inferred from surface air-sample measurements and from TCCON<br>retrievals of the CO <sub>2</sub> total column. Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                           | 1.5  | 85        |
| 34 | Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric<br>Chemistry and Physics, 2017, 17, 11135-11161.                                                                                                                      | 1.9  | 85        |
| 35 | Atmospheric verification of anthropogenic CO2 emission trends. Nature Climate Change, 2013, 3, 520-524.                                                                                                                                                                  | 8.1  | 84        |
| 36 | Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern<br>Ocean: Summer results and seasonal differences. Quarterly Journal of the Royal Meteorological<br>Society, 1998, 124, 151-168.                                              | 1.0  | 82        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | HFC-23 (CHF <sub>3</sub> ) emission trend response to HCFC-22<br>(CHClF <sub>2</sub> ) production and recent HFC-23 emission abatement<br>measures. Atmospheric Chemistry and Physics, 2010, 10, 7875-7890.                                       | 1.9  | 76        |
| 38 | Growth Rate, Seasonal, Synoptic, Diurnal Variations and Budget of Methane in the Lower Atmosphere.<br>Journal of the Meteorological Society of Japan, 2009, 87, 635-663.                                                                          | 0.7  | 74        |
| 39 | Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern Ocean. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1307-1339.                                                         | 1.0  | 69        |
| 40 | Role of OH variability in the stalling of the global atmospheric<br>CH <sub>4</sub> growth rate from 1999 to 2006. Atmospheric Chemistry<br>and Physics, 2016, 16, 7943-7956.                                                                     | 1.9  | 68        |
| 41 | Global trends, seasonal cycles, and European emissions of dichloromethane, trichloroethene, and<br>tetrachloroethene from the AGAGE observations at Mace Head, Ireland, and Cape Grim, Tasmania.<br>Journal of Geophysical Research, 2006, 111, . | 3.3  | 67        |
| 42 | Atmospheric observations show accurate reporting and little growth in India's methane emissions.<br>Nature Communications, 2017, 8, 836.                                                                                                          | 5.8  | 67        |
| 43 | Reconciling reported and unreported HFC emissions with atmospheric observations. Proceedings of the United States of America, 2015, 112, 5927-5931.                                                                                               | 3.3  | 66        |
| 44 | The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride<br>(SF <sub>6</sub> ). Atmospheric Chemistry and Physics, 2020, 20, 7271-7290.                                                                                        | 1.9  | 63        |
| 45 | A decline in emissions of CFC-11 and related chemicals from eastern China. Nature, 2021, 590, 433-437.                                                                                                                                            | 13.7 | 61        |
| 46 | Exploring causes of interannual variability in the seasonal cycles of tropospheric nitrous oxide.<br>Atmospheric Chemistry and Physics, 2011, 11, 3713-3730.                                                                                      | 1.9  | 60        |
| 47 | Atmospheric histories of halocarbons from analysis of Antarctic firn air: Methyl bromide, methyl<br>chloride, chloroform, and dichloromethane. Journal of Geophysical Research, 2004, 109, n/a-n/a.                                               | 3.3  | 59        |
| 48 | Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion. Atmospheric Chemistry and Physics, 2014, 14, 1801-1817.                                                                                                                 | 1.9  | 59        |
| 49 | AGAGE Observations of Methyl Bromide and Methyl Chloride at Mace Head, Ireland, and Cape Grim,<br>Tasmania, 1998–2001. Journal of Atmospheric Chemistry, 2004, 47, 243-269.                                                                       | 1.4  | 58        |
| 50 | A decline in global CFC-11 emissions during 2018â^22019. Nature, 2021, 590, 428-432.                                                                                                                                                              | 13.7 | 55        |
| 51 | Optimal estimation of the soil uptake rate of molecular hydrogen from the Advanced Global<br>Atmospheric Gases Experiment and other measurements. Journal of Geophysical Research, 2007, 112, .                                                   | 3.3  | 54        |
| 52 | Title is missing!. Journal of Atmospheric Chemistry, 2003, 45, 79-99.                                                                                                                                                                             | 1.4  | 51        |
| 53 | Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model. Atmospheric Chemistry and Physics, 2010, 10, 5515-5533.                                                                                  | 1.9  | 51        |
| 54 | TransCom N <sub>2</sub> O model inter-comparison – Part 2: Atmospheric<br>inversion estimates of N <sub>2</sub> O emissions. Atmospheric Chemistry<br>and Physics, 2014, 14, 6177-6194.                                                           | 1.9  | 49        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates. Journal of Geophysical Research, 2007, 112, .                                   | 3.3 | 48        |
| 56 | Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc,<br>HFC-245fa, HFC-227ea, and HFC-236fa. Journal of Geophysical Research, 2011, 116, .                                                 | 3.3 | 48        |
| 57 | The Surface Energy Balance at Local and Regional Scales-A Comparison of General Circulation Model Results with Observations. Journal of Climate, 1993, 6, 1090-1109.                                                                 | 1.2 | 46        |
| 58 | Precipitation in marine cumulus and stratocumulus Atmospheric Research, 2000, 54, 117-155.                                                                                                                                           | 1.8 | 46        |
| 59 | Source and meteorological influences on air quality (CO, CH4 & CO2) at a Southern Hemisphere urban site. Atmospheric Environment, 2016, 126, 274-289.                                                                                | 1.9 | 46        |
| 60 | Strong Southern Ocean carbon uptake evident in airborne observations. Science, 2021, 374, 1275-1280.                                                                                                                                 | 6.0 | 44        |
| 61 | Stratospheric influence on the seasonal cycle of nitrous oxide in the troposphere as deduced from aircraft observations and model simulations. Journal of Geophysical Research, 2010, 115, .                                         | 3.3 | 43        |
| 62 | Growth in stratospheric chlorine from shortâ€lived chemicals not controlled by the Montreal<br>Protocol. Geophysical Research Letters, 2015, 42, 4573-4580.                                                                          | 1.5 | 42        |
| 63 | Changing trends and emissions of hydrochlorofluorocarbons (HCFCs) and their hydrofluorocarbon (HFCs) replacements. Atmospheric Chemistry and Physics, 2017, 17, 4641-4655.                                                           | 1.9 | 42        |
| 64 | Towards a Universal "Baseline―Characterisation of Air Masses for High- and Low-Altitude Observing<br>Stations Using Radon-222. Aerosol and Air Quality Research, 2016, 16, 885-899.                                                  | 0.9 | 42        |
| 65 | Measuring Entrainment, Divergence, and Vorticity on the Mesoscale from Aircraft. Journal of Atmospheric and Oceanic Technology, 1999, 16, 1384-1400.                                                                                 | 0.5 | 41        |
| 66 | Increase in global emissions of HFC-23 despite near-total expected reductions. Nature Communications, 2020, 11, 397.                                                                                                                 | 5.8 | 41        |
| 67 | Global and regional emission estimates for HCFC-22. Atmospheric Chemistry and Physics, 2012, 12, 10033-10050.                                                                                                                        | 1.9 | 40        |
| 68 | Global emissions of HFC-143a<br>(CH <sub>3</sub> CF <sub>3</sub> ) and HFC-32<br>(CH <sub>2</sub> F <sub>2</sub> ) from in situ<br>and air archive atmospheric observations. Atmospheric Chemistry and Physics, 2014, 14, 9249-9258. | 1.9 | 39        |
| 69 | Global and regional emissions of HFCâ€125 (CHF <sub>2</sub> CF <sub>3</sub> ) from in situ and air archive atmospheric observations at AGAGE and SOGE observatories. Journal of Geophysical Research, 2009, 114, .                   | 3.3 | 38        |
| 70 | Results from the International Halocarbons in Air Comparison Experiment (IHALACE). Atmospheric<br>Measurement Techniques, 2014, 7, 469-490.                                                                                          | 1.2 | 37        |
| 71 | Characterizing Atmospheric Transport Pathways to Antarctica and the Remote Southern Ocean Using Radon-222. Frontiers in Earth Science, 2018, 6, .                                                                                    | 0.8 | 37        |
| 72 | Continued Emissions of the Ozoneâ€Depleting Substance Carbon Tetrachloride From Eastern Asia.<br>Geophysical Research Letters, 2018, 45, 11423-11430.                                                                                | 1.5 | 37        |

| #  | Article                                                                                                                                                                                                                  | IF                  | CITATIONS            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|
| 73 | Atmospheric histories and emissions of chlorofluorocarbons CFC-13<br>(CClF <sub>3</sub> ), ΣCFC-114<br>(C <sub>2</sub> ClF>2 <sub>5<sub>),<br/>and CFC-115 (C<sub>2</sub>ClF<sub>5</sub>).</sub></sub>                   | np;g <b>t;%</b> &ar | np; <b>¤ø</b> sub&am |
| 74 | Trace gas emissions from Melbourne, Australia, based on AGAGE observations at Cape Grim, Tasmania, 1995〓2000. Atmospheric Environment, 2005, 39, 6334-6344.                                                              | 1.9                 | 35                   |
| 75 | Global modelling of H <sub>2</sub> mixing ratios and isotopic compositions with the TM5 model. Atmospheric Chemistry and Physics, 2011, 11, 7001-7026.                                                                   | 1.9                 | 35                   |
| 76 | Atmospheric monitoring of the CO2CRC Otway Project and lessons for large scale CO2 storage projects. Energy Procedia, 2011, 4, 3666-3675.                                                                                | 1.8                 | 35                   |
| 77 | Australian carbon tetrachloride emissions in a global context. Environmental Chemistry, 2014, 11, 77.                                                                                                                    | 0.7                 | 35                   |
| 78 | Estimating regional fluxes of CO <sub>2</sub> and<br>CH <sub>4</sub> using space-borne observations of<br>XCH <sub>4</sub> : XCO <sub>2</sub> .<br>Atmospheric Chemistry and Physics, 2014;14, 12883-12895; ons          | 1.9                 | 35                   |
| 79 | CF <sub>4</sub> ,<br>C <sub>2</sub> F <sub>6</sub> and<br>C <sub>3</sub> F <sub>8</sub> since 1800<br>inferred from ice core, firn, air archive and in situ measurements. Atmospheric Chemistry and Physics.             | 1.9                 | 35                   |
| 80 | TransCom N <sub>2</sub> O model inter-comparison – Part 1: Assessing the influence of transport and surface fluxes on tropospheric N <sub>2</sub> O variability. Atmospheric Chemistry and Physics, 2014, 14, 4349-4368. | 1.9                 | 34                   |
| 81 | Recent Trends in Stratospheric Chlorine From Very Short‣ived Substances. Journal of Geophysical<br>Research D: Atmospheres, 2019, 124, 2318-2335.                                                                        | 1.2                 | 34                   |
| 82 | The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005. Atmospheric Chemistry and Physics, 2017, 17, 2255-2277.                                                     | 1.9                 | 33                   |
| 83 | Identification of Regional Sources of Methyl Bromide and Methyl Iodide from AGAGE Observations at<br>Cape Grim, Tasmania. Journal of Atmospheric Chemistry, 2005, 50, 59-77.                                             | 1.4                 | 32                   |
| 84 | Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride. Atmospheric Chemistry and Physics, 2010, 10, 10421-10434.                             | 1.9                 | 32                   |
| 85 | Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a,) Tj ETQq1 1 0.784314 rgBT /Overloo<br>and air archive observations. Atmospheric Chemistry and Physics, 2016, 16, 365-382.                       | k 10 Tf 50<br>1.9   | 267 Td (CH&a<br>30   |
| 86 | Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies. Atmospheric Chemistry and Physics, 2022, 22, 6087-6101.            | 1.9                 | 29                   |
| 87 | Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations. Remote Sensing, 2020, 12, 375.                                                                    | 1.8                 | 28                   |
| 88 | Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania.<br>Atmospheric Chemistry and Physics, 2015, 15, 13393-13411.                                                                | 1.9                 | 27                   |
| 89 | Global HCFC-22 measurements with MIPAS: retrieval, validation, global distribution and its evolution over 2005–2012. Atmospheric Chemistry and Physics, 2016, 16, 3345-3368.                                             | 1.9                 | 27                   |
| 90 | Recent increases in the atmospheric growth rate and emissions of HFC-23<br>(CHF <sub>3</sub> ) and the link to HCFC-22<br>(CHClF <sub>2</sub> ) production. Atmospheric Chemistry and Physics, 2018,<br>18, 4153-4169.   | 1.9                 | 27                   |

r

| #   | Article                                                                                                                                                                                                                                                      | IF             | CITATIONS          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|
| 91  | Reassessing the variability in atmospheric H <sub>2</sub> using the twoâ€way nested TM5 model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3764-3780.                                                                                         | 1.2            | 26                 |
| 92  | Deriving Global OH Abundance and Atmospheric Lifetimes for Longâ€Lived Gases: A Search for<br>CH <sub>3</sub> CCl <sub>3</sub> Alternatives. Journal of Geophysical Research D: Atmospheres, 2017,<br>122, 11,914.                                           | 1.2            | 26                 |
| 93  | How well do different tracers constrain the firn diffusivity profile?. Atmospheric Chemistry and Physics, 2013, 13, 1485-1510.                                                                                                                               | 1.9            | 25                 |
| 94  | Emissions of halocarbons from India inferred through atmospheric measurements. Atmospheric Chemistry and Physics, 2019, 19, 9865-9885.                                                                                                                       | 1.9            | 25                 |
| 95  | Atmospheric histories and global emissions of halons Hâ€1211 (CBrClF <sub>2</sub> ), Hâ€1301<br>(CBrF <sub>3</sub> ), and Hâ€2402 (CBrF <sub>2</sub> CBrF <sub>2</sub> ). Journal of Geophysical<br>Research D: Atmospheres, 2016, 121, 3663-3686.           | 1.2            | 24                 |
| 96  | Rapid increase in dichloromethane emissions from China inferred through atmospheric observations.<br>Nature Communications, 2021, 12, 7279.                                                                                                                  | 5.8            | 24                 |
| 97  | C <sub>4</sub> F <sub>10</sub> ,<br>C <sub>5</sub> F <sub>12</sub> ,<br>C <sub>6</sub> F <sub>14</sub> ,<br>C <sub>7</sub> F <sub>16</sub> and                                                                                                               | 1.9            | 23                 |
| 98  | Quantifying aluminum and semiconductor industry perfluorocarbon emissions from atmospheric<br>Quantifying aluminum and semiconductor industry perfluorocarbon emissions from atmospheric<br>measurements. Geophysical Research Letters, 2014, 41, 4787-4794. | 1.5            | 23                 |
| 99  | Microphysical properties of boundary layer clouds over the Southern Ocean during ACE 1. Journal of Geophysical Research, 1998, 103, 16651-16663.                                                                                                             | 3.3            | 22                 |
| 100 | Differences between trends in atmospheric CO <sub>2</sub> and the reported trends in<br>anthropogenic CO <sub>2</sub> emissions. Tellus, Series B: Chemical and Physical<br>Meteorology, 2022, 62, 316.                                                      | 0.8            | 22                 |
| 101 | Top-down constraints on global N <sub>2</sub> O emissions at optimal resolution: application of aÂnew dimension reduction technique. Atmospheric Chemistry and Physics, 2018, 18, 735-756.                                                                   | 1.9            | 22                 |
| 102 | Perfluorocyclobutane (PFC-318,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 307 Td ( <i>cin the global atmosphere. Atmospheric Chemistry and Physics, 2019, 19, 10335-10359.</i>                                                                                    | 1.9 imp;gt;-C& | amp;lt;sub&a<br>22 |
| 103 | Methyl Chloroform Continues to Constrain the Hydroxyl (OH) Variability in the Troposphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033862.                                                                                         | 1.2            | 21                 |
| 104 | Correction of aircraft pyranometer measurements for diffuse radiance and alignment errors. Journal of Geophysical Research, 1998, 103, 16753-16758.                                                                                                          | 3.3            | 18                 |
| 105 | A Synthesis Inversion to Constrain Global Emissions of Two Very Short Lived Chlorocarbons:<br>Dichloromethane, and Perchloroethylene. Journal of Geophysical Research D: Atmospheres, 2020, 125,<br>e2019JD031818.                                           | 1.2            | 18                 |
| 106 | Evidence of a recent decline in UKÂemissions of hydrofluorocarbons determined by the InTEM inverse<br>model and atmospheric measurements. Atmospheric Chemistry and Physics, 2021, 21, 12739-12755.                                                          | 1.9            | 17                 |
| 107 | Precursors to Particles (P2P) at Cape Grim 2006: campaign overview. Environmental Chemistry, 2007, 4, 143.                                                                                                                                                   | 0.7            | 17                 |
| 108 | The Antarctic ozone hole during 2010. Australian Meteorological Magazine, 2011, 61, 253-267.                                                                                                                                                                 | 0.4            | 17                 |

| #   | Article                                                                                                                                                                                                                     | IF         | CITATIONS             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|
| 109 | Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                | 3.3        | 16                    |
| 110 | Interannual variability in tropospheric nitrous oxide. Geophysical Research Letters, 2013, 40, 4426-4431.                                                                                                                   | 1.5        | 15                    |
| 111 | Simulation of atmospheric N <sub>2</sub> O with GEOS-Chem and its<br>adjoint: evaluation of observational constraints. Geoscientific Model Development, 2015, 8, 3179-3198.                                                 | 1.3        | 15                    |
| 112 | Isotopic ordering in atmospheric O <sub>2</sub> as a tracer of ozone photochemistry and the tropical atmosphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,541.                                         | 1.2        | 15                    |
| 113 | Identification of platform exhaust on the RV <i>Investigator</i> .<br>Atmospheric Measurement Techniques, 2019, 12, 3019-3038.                                                                                              | 1.2        | 15                    |
| 114 | Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations. Atmospheric Chemistry and Physics, 2015, 15, 3217-3239. | 1.9        | 14                    |
| 115 | Synoptic variations in atmospheric CO <sub>2</sub> at Cape Grim: a model intercomparison.<br>Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 810.                                                            | 0.8        | 13                    |
| 116 | Reply to 'Anthropogenic CO2 emissions'. Nature Climate Change, 2013, 3, 604-604.                                                                                                                                            | 8.1        | 13                    |
| 117 | The Antarctic ozone hole during 2008 and 2009. Australian Meteorological Magazine, 2011, 61, 77-90.                                                                                                                         | 0.4        | 13                    |
| 118 | Thermodynamic structure and entrainment of stratocumulus over the Southern Ocean. Journal of<br>Geophysical Research, 1998, 103, 16637-16650.                                                                               | 3.3        | 12                    |
| 119 | HFC-43-10mee atmospheric abundances and global emission estimates. Geophysical Research Letters, 2014, 41, 2228-2235.                                                                                                       | 1.5        | 12                    |
| 120 | First observations, trends, and emissions of <scp>HCFCâ€31 (CH<sub>2</sub>ClF)</scp> in the global atmosphere. Geophysical Research Letters, 2015, 42, 7817-7824.                                                           | 1.5        | 12                    |
| 121 | Abrupt reversal in emissions and atmospheric abundance of HCFC-133a (CF <sub>3</sub> ) Tj ETQq1 1 0.784314                                                                                                                  | 4 rgBT /Ov | verlock 10 Tf 5<br>12 |
| 122 | The Antarctic ozone hole during 2018 and 2019. Journal of Southern Hemisphere Earth Systems Science, 2021, 71, 66-91.                                                                                                       | 0.7        | 12                    |
| 123 | (CF <sub>4</sub> ), hexafluoroethane<br>(C <sub>2</sub> F <sub>6</sub> ) and<br>octafluoropropane<br>(C&:lt:sub&:gt:3&:lt:/sub&:gt:F&:lt:sub&:gt:8&:lt:/sub&:gt:). Atmospheric                                              | 1.9        | 12                    |
| 124 | Chemistry and Physics, 2021, 21, 2149-2164.<br>Chemical evidence of inter-hemispheric air mass intrusion into the Northern Hemisphere<br>mid-latitudes. Scientific Reports, 2018, 8, 4669.                                  | 1.6        | 11                    |
| 125 | Postfrontal nanoparticles at Cape Grim: observations. Environmental Chemistry, 2009, 6, 508.                                                                                                                                | 0.7        | 11                    |
| 126 | The Antarctic ozone hole during 2020. Journal of Southern Hemisphere Earth Systems Science, 2022, 72, 19-37.                                                                                                                | 0.7        | 11                    |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Growing Atmospheric Emissions of Sulfuryl Fluoride. Journal of Geophysical Research D:<br>Atmospheres, 2021, 126, e2020JD034327.                                                                                             | 1.2 | 10        |
| 128 | Improved continuousin situmeasurements of C1–C3PFCs, HFCs, HCFCs, CFCs and SF6in Europe and Australia. Journal of Integrative Environmental Sciences, 2005, 2, 253-261.                                                      | 0.8 | 9         |
| 129 | Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions. Atmospheric Chemistry and Physics, 2015, 15, 305-317.                                                    | 1.9 | 9         |
| 130 | Emissions and Marine Boundary Layer Concentrations of Unregulated Chlorocarbons Measured at<br>Cape Point, South Africa. Environmental Science & Technology, 2020, 54, 10514-10523.                                          | 4.6 | 9         |
| 131 | H <sub>2</sub> in Antarctic firn air: Atmospheric reconstructions and implications for anthropogenic emissions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                | 3.3 | 9         |
| 132 | Top-down and bottom-up estimates of anthropogenic methyl bromide emissions from eastern China.<br>Atmospheric Chemistry and Physics, 2022, 22, 5157-5173.                                                                    | 1.9 | 9         |
| 133 | Characteristics of marine boundary layers during two Lagrangian measurement periods: 1. General conditions and mean characteristics. Journal of Geophysical Research, 1999, 104, 21751-21765.                                | 3.3 | 8         |
| 134 | Composition of Clean Marine Air and Biogenic Influences on VOCs during the MUMBA Campaign.<br>Atmosphere, 2019, 10, 383.                                                                                                     | 1.0 | 8         |
| 135 | A short climatology of nanoparticles at the Cape Grim Baseline Air Pollution Station, Tasmania.<br>Environmental Chemistry, 2007, 4, 301.                                                                                    | 0.7 | 8         |
| 136 | Forward and Inverse Modelling of Atmospheric Nitrous Oxide Using MIROC4-Atmospheric<br>Chemistry-Transport Model. Journal of the Meteorological Society of Japan, 2022, 100, 361-386.                                        | 0.7 | 8         |
| 137 | The atmospheric boundary layer in the CSIRO global climate model: simulations versus observations.<br>Climate Dynamics, 2002, 19, 397-415.                                                                                   | 1.7 | 7         |
| 138 | The Antarctic ozone hole during 2011. Australian Meteorological Magazine, 2014, 64, 293-311.                                                                                                                                 | 0.4 | 7         |
| 139 | Seasonal climate summary southern hemisphere (spring 2014): El Niño continues to try to break<br>through, and Australia has its warmest spring on record (again!). Australian Meteorological<br>Magazine, 2015, 65, 267-292. | 0.4 | 7         |
| 140 | A line of convection embedded in a stratocumulus-topped boundary layer. Quarterly Journal of the<br>Royal Meteorological Society, 1997, 123, 207-221.                                                                        | 1.0 | 6         |
| 141 | Net Community Production in the Southern Ocean: Insights From Comparing Atmospheric Potential<br>Oxygen to Satellite Ocean Color Algorithms and Ocean Models. Geophysical Research Letters, 2018, 45,<br>10,549-10,559.      | 1.5 | 6         |
| 142 | The Macquarie Island (LoFlo2G) high-precision continuous atmospheric carbon dioxide record.<br>Atmospheric Measurement Techniques, 2019, 12, 1103-1121.                                                                      | 1.2 | 6         |
| 143 | Trends in Antarctic ozone hole metrics 2001–17. Journal of Southern Hemisphere Earth Systems<br>Science, 2019, 69, 52.                                                                                                       | 0.7 | 6         |
| 144 | Australian chlorofluorocarbon (CFC) emissions: 1960–2017. Environmental Chemistry, 2020, 17, 525.                                                                                                                            | 0.7 | 6         |

| #   | Article                                                                                                                                                                                                                                          | IF       | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 145 | Australian Fire Emissions of Carbon Monoxide Estimated by Global Biomass Burning Inventories:<br>Variability and Observational Constraints. Journal of Geophysical Research D: Atmospheres, 2022, 127, .                                         | 1.2      | 6         |
| 146 | Model sensitivity studies of the decrease in atmospheric carbon tetrachloride. Atmospheric Chemistry and Physics, 2016, 16, 15741-15754.                                                                                                         | 1.9      | 5         |
| 147 | The Antarctic ozone hole during 2017. Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 29.                                                                                                                                        | 0.7      | 5         |
| 148 | Corrigendum to "Global and regional emission estimates for HCFC-22", Atmos. Chem. Phys.,<br>12, 10033–10050, 2012. Atmospheric Chemistry and Physics, 2014, 14, 4857-4858.                                                                       | 1.9      | 4         |
| 149 | Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 582 Td ( <i&a< td=""><td>1.9 -</td><td>4</td></i&a<>            | 1.9 -    | 4         |
|     | in the atmosphere. Atmospheric Chemistry and Physics 2019, 19, 3481, 3492<br>Global emissions of perfluorocyclobutane (PFC-318,) TJ ETQq0 0 0 rgBT /Overlock 10 Tf 50 557 Td ( <i&amp< td=""><td>;gt;c&amp;am</td><td>p;lt;/i&amp;</td></i&amp<> | ;gt;c&am | p;lt;/i&  |
| 150 | resulting from the use of hydrochlorofluorocarbon-22 (HCFC-22) feedstock to produce polytetrafluoroethylene (PTFE) and related fluorochemicals. Atmospheric Chemistry and Physics, 2022, 22, 3371-3378.                                          | 1.9      | 4         |
| 151 | The Antarctic ozone hole during 2015 and 2016. Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 16.                                                                                                                               | 0.7      | 3         |
| 152 | The Antarctic ozone hole during 2012. Australian Meteorological Magazine, 2014, 64, 313-330.                                                                                                                                                     | 0.4      | 3         |
| 153 | The Antarctic ozone hole during 2014. Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 1.                                                                                                                                         | 0.7      | 2         |
| 154 | Correction to "Sulfuryl fluoride in the global atmosphere― Journal of Geophysical Research, 2009, 114, .                                                                                                                                         | 3.3      | 1         |
| 155 | Quantifying the Imprints of Stratospheric Contributions to Interhemispheric Differences in<br>Tropospheric CFCâ€11, CFCâ€12, and N 2 O Abundances. Geophysical Research Letters, 2021, 48,<br>e2021GL093700.                                     | 1.5      | 1         |
| 156 | First ground-based Fourier transform infrared (FTIR) spectrometer observations of HFC-23 at<br>Rikubetsu, Japan, and Syowa Station, Antarctica. Atmospheric Measurement Techniques, 2021, 14,<br>5955-5976.                                      | 1.2      | 1         |
| 157 | The Antarctic ozone hole during 2013. Australian Meteorological Magazine, 2015, 65, 247-266.                                                                                                                                                     | 0.4      | 1         |
| 158 | Seasonal climate summary southern hemisphere (spring 2012): warmer and drier across much of<br>Australia, along with a new southern hemisphere sea ice extend record. Australian Meteorological<br>Magazine, 2013, 63, 427-442.                  | 0.4      | 1         |
| 159 | Corrigendum to "Source attribution of the changes in atmospheric methane for 2006–2008" published in Atmos. Chem. Phys., 11, 3689–3700, 2011. Atmospheric Chemistry and Physics, 2012, 12, 9381-9382.                                            | 1.9      | 0         |
| 160 | IRIS analyser assessment reveals sub-hourly variability of isotope ratios in carbon dioxide at Baring<br>Head, New Zealand's atmospheric observatory in the Southern Ocean. Atmospheric Measurement<br>Techniques, 2022, 15, 1631-1656.          | 1.2      | 0         |