Adriana Haimovitz-Friedman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4733803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunomodulatory Effects of Stereotactic Body Radiation Therapy: Preclinical Insights and Clinical Opportunities. International Journal of Radiation Oncology Biology Physics, 2021, 110, 35-52.	0.8	54
2	Chemotherapy-induced acute vascular injury involves intracellular generation of ROS via activation of the acid sphingomyelinase pathway. Cellular Signalling, 2021, 82, 109969.	3.6	5
3	Chemotherapeutic Agents-Induced Ceramide-Rich Platforms (CRPs) in Endothelial Cells and Their Modulation. Methods in Molecular Biology, 2021, 2187, 215-221.	0.9	1
4	Photobiomodulation effects on head and neck squamous cell carcinoma (HNSCC) in an orthotopic animal model. Supportive Care in Cancer, 2020, 28, 2721-2727.	2.2	10
5	Organoids Reveal That Inherent Radiosensitivity of Small and Large Intestinal Stem Cells Determines Organ Sensitivity. Cancer Research, 2020, 80, 1219-1227.	0.9	30
6	Manipulating Oxidative Stress Following Ionizing Radiation. , 2020, 1, 8-13.		1
7	Abstract 15364: Radiation Exposure of the Base of the Heart Accelerates Coronary Atherosclerosis. Circulation, 2020, 142, .	1.6	1
8	An Antitumor Immune Response Is Evoked by Partial-Volume Single-Dose Radiation in 2 Murine Models. International Journal of Radiation Oncology Biology Physics, 2019, 103, 697-708.	0.8	62
9	Single-dose radiotherapy disables tumor cell homologous recombination via ischemia/reperfusion injury. Journal of Clinical Investigation, 2019, 129, 786-801.	8.2	50
10	Abstract 3735: An anti-tumor immune response is evoked by partial-volume single dose radiation. , 2019, , .		0
11	Logarithmic expansion of LGR5 + cells in human colorectal cancer. Cellular Signalling, 2018, 42, 97-105.	3.6	35
12	An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Science Translational Medicine, 2018, 10, .	12.4	80
13	Phosphorylation state of Ser165 in α-tubulin is a toggle switch that controls proliferating human breast tumors. Cellular Signalling, 2018, 52, 74-82.	3.6	5
14	Pazopanib radio-sensitization of human sarcoma tumors. Oncotarget, 2018, 9, 9311-9324.	1.8	4
15	Distinct Levels of Radioresistance in Lgr5+ Colonic Epithelial Stem Cells versus Lgr5+ Small Intestinal Stem Cells. Cancer Research, 2017, 77, 2124-2133.	0.9	44
16	Gemcitabine kills proliferating endothelial cells exclusively via acid sphingomyelinase activation. Cellular Signalling, 2017, 34, 86-91.	3.6	16
17	Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nature Communications, 2017, 8, 14292.	12.8	90
18	In Vitro and In Vivo Comparison of Gemcitabine and the Gemcitabine Analog 1-(2′-deoxy-2′-fluoroarabinofuranosyl) Cytosine (FAC) in Human Orthotopic and Genetically Modified Mouse Pancreatic Cancer Models. Molecular Imaging and Biology, 2017, 19, 885-892.	2.6	14

#	Article	IF	CITATIONS
19	A Combination of Radiation and the Hypoxia-Activated Prodrug Evofosfamide (TH-302) is Efficacious against a Human Orthotopic Pancreatic Tumor Model. Translational Oncology, 2017, 10, 760-765.	3.7	33
20	Targeting acid sphingomyelinase with anti-angiogenic chemotherapy. Cellular Signalling, 2017, 29, 52-61.	3.6	17
21	Abstract 4122: Tumor-specific PI3K inhibition via nanoparticle targeted delivery in head and neck squamous cell carcinoma. , 2017, , .		0
22	Radiation-Induced Microvascular Injury as a Mechanism of Salivary Gland Hypofunction and Potential Target for Radioprotectors. Radiation Research, 2016, 186, 189-195.	1.5	35
23	P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Science Translational Medicine, 2016, 8, 345ra87.	12.4	152
24	Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors. PLoS ONE, 2015, 10, e0127862.	2.5	11
25	Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways. Biological Chemistry, 2015, 396, 669-679.	2.5	22
26	Abstract LB-215: Epigenetic loss-of-function BRCA1 mediates tumor cure by single dose radiotherapy. , 2015, , .		0
27	Abstract 3347: Radiation-induced gastrointestinal (GI) syndrome as a function of age. , 2015, , .		0
28	Preface: Nanotechnology in Imaging and Cancer Therapy. Critical Reviews in Oncogenesis, 2014, 19, v-vii.	0.4	0
29	Axitinib sensitization of high Single Dose Radiotherapy. Radiotherapy and Oncology, 2014, 111, 88-93.	0.6	44
30	Sphingolipids' Role in Radiotherapy for Prostate Cancer. Handbook of Experimental Pharmacology, 2013, , 115-130.	1.8	7
31	Adenoviral Transduction of Human Acid Sphingomyelinase into Neo-Angiogenic Endothelium Radiosensitizes Tumor Cure. PLoS ONE, 2013, 8, e69025.	2.5	22
32	Imaging Radiotherapy-Induced Apoptosis. Radiation Research, 2012, 177, 467-482.	1.5	15
33	Crypt Base Columnar Stem Cells in Small Intestines of Mice Are Radioresistant. Gastroenterology, 2012, 143, 1266-1276.	1.3	178
34	Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. Journal of Clinical Investigation, 2012, 122, 1786-1790.	8.2	110
35	Mitochondrial Ceramide-Rich Macrodomains Functionalize Bax upon Irradiation. PLoS ONE, 2011, 6, e19783.	2.5	122
36	Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cellular Signalling, 2010, 22, 1300-1307.	3.6	188

#	Article	IF	CITATIONS
37	Endothelial Membrane Remodeling Is Obligate for Anti-Angiogenic Radiosensitization during Tumor Radiosurgery. PLoS ONE, 2010, 5, e12310.	2.5	101
38	Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-β1-mediated tissue fibrosis. American Journal of Physiology - Cell Physiology, 2010, 299, C589-C605.	4.6	124
39	Regulation of Ceramide Synthase–Mediated Crypt Epithelium Apoptosis by DNA Damage Repair Enzymes. Cancer Research, 2010, 70, 957-967.	0.9	27
40	Impact of Stromal Sensitivity on Radiation Response of Tumors Implanted in SCID Hosts Revisited. Cancer Research, 2010, 70, 8179-8186.	0.9	57
41	Abstract 1406: Involvement of DNA repair pathways in DAG-lactone radiosensitization of human LNCaP cells. , 2010, , .		0
42	A Ceramide-binding C1 Domain Mediates Kinase Suppressor of Ras Membrane Translocation. Cellular Physiology and Biochemistry, 2009, 24, 219-230.	1.6	46
43	PKCα activation down-regulates ATM and radio-sensitizes androgen-sensitive human prostate cancer cells in vitro and in vivo. Cancer Biology and Therapy, 2009, 8, 54-63.	3.4	18
44	Safingol (l- <i>threo</i> -sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase pathway. Autophagy, 2009, 5, 184-193.	9.1	97
45	Kinase suppressor of Ras transphosphorylates c-Raf-1. Biochemical and Biophysical Research Communications, 2009, 390, 434-440.	2.1	17
46	Bax and Bak Do Not Exhibit Functional Redundancy in Mediating Radiation-Induced Endothelial Apoptosis in the Intestinal Mucosa. International Journal of Radiation Oncology Biology Physics, 2008, 70, 804-815.	0.8	62
47	Conformationally Constrained Analogues of Diacylglycerol. 29. Cells Sort Diacylglycerol-Lactone Chemical Zip Codes to Produce Diverse and Selective Biological Activities. Journal of Medicinal Chemistry, 2008, 51, 5198-5220.	6.4	40
48	Ceramide Biogenesis Is Required for Radiation-Induced Apoptosis in the Germ Line of <i>C. elegans</i> . Science, 2008, 322, 110-115.	12.6	181
49	Kinetic characterization of mammalian ceramide synthases: Determination of <i>K</i> _m values towards sphinganine. FEBS Letters, 2007, 581, 5289-5294.	2.8	73
50	ATM regulates target switching to escalating doses of radiation in the intestines. Nature Medicine, 2005, 11, 484-490.	30.7	136
51	Down-regulation of ATM Protein Sensitizes Human Prostate Cancer Cells to Radiation-induced Apoptosis. Journal of Biological Chemistry, 2005, 280, 23262-23272.	3.4	50
52	Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis. Science, 2003, 300, 1155-1159.	12.6	1,474
53	Differential inhibition of radiation-induced apoptosis. Stem Cells, 1997, 15, 43-47.	3.2	13
54	Acid Sphingomyelinase–Deficient Human Lymphoblasts and Mice Are Defective in Radiation-Induced Apoptosis. Cell, 1996, 86, 189-199.	28.9	780

#	Article	IF	CITATIONS
55	Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature, 1996, 380, 75-79.	27.8	1,789
56	Transforming growth factor-?1 stimulates macrophage urokinase expression and release of matrix-bound basic fibroblast growth factor. Journal of Cellular Physiology, 1993, 155, 595-605.	4.1	89
57	Stress response genes induced in mammalian cells by ionizing radiation. Radiation Oncology Investigations, 1993, 1, 81-93.	0.9	18