John J Mackay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4733410/publications.pdf

Version: 2024-02-01

61857 53109 7,764 98 43 85 citations h-index g-index papers 100 100 100 6923 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spruce gigaâ€genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. Plant Journal, 2022, 111, 1469-1485.	2.8	17
2	Connecting treeâ€ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer. Molecular Ecology, 2021, 30, 3898-3917.	2.0	35
3	Physiological responses of rosewoods <i>Dalbergia cochinchinensis</i> and <i>D. oliveri</i> under drought and heat stresses. Ecology and Evolution, 2020, 10, 10872-10885.	0.8	8
4	Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia. Scientific Reports, 2020, 10, 17749.	1.6	20
5	Hydroxyacetophenone defenses in white spruce against spruce budworm. Evolutionary Applications, 2020, 13, 62-75.	1.5	12
6	Multiple Metabolic Innovations and Losses Are Associated with Major Transitions in Land Plant Evolution. Current Biology, 2020, 30, 1783-1800.e11.	1.8	42
7	The large repertoire of conifer NLR resistance genes includes drought responsive and highly diversified RNLs. Scientific Reports, 2019, 9, 11614.	1.6	49
8	Functional Analysis of the PgCesA3 White Spruce Cellulose Synthase Gene Promoter in Secondary Xylem. Frontiers in Plant Science, 2019, 10, 626.	1.7	5
9	Gene copy number variations involved in balsam poplar (<i>Populus balsamifera</i> L.) adaptive variations. Molecular Ecology, 2019, 28, 1476-1490.	2.0	31
10	Genetic control and evolutionary potential of a constitutive resistance mechanism against the spruce budworm (Choristoneura fumiferana) in white spruce (Picea glauca). Heredity, 2018, 121, 142-154.	1.2	12
11	Evolution of the biosynthesis of two hydroxyacetophenones in plants. Plant, Cell and Environment, 2018, 41, 620-629.	2.8	19
12	Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiology, 2018, 38, 442-456.	1.4	30
13	Association genetics of acetophenone defence against spruce budworm in mature white spruce. BMC Plant Biology, 2018, 18, 231.	1.6	18
14	A highâ€resolution reference genetic map positioning 8.8ÂK genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. Plant Journal, 2017, 90, 189-203.	2.8	47
15	Insect herbivory (Choristoneura fumiferana, Tortricidea) underlies tree population structure (Picea) Tj ETQq1 10.	.784314 r	rgBT ₅ /Overla <mark>ck</mark>
16	Gene copy number variations in adaptive evolution: The genomic distribution of gene copy number variations revealed by genetic mapping and their adaptive role in an undomesticated species, white spruce (<i>Picea glauca</i>). Molecular Ecology, 2017, 26, 5989-6001.	2.0	25
17	A Conifer UDP-Sugar Dependent Glycosyltransferase Contributes to Acetophenone Metabolism and Defense against Insects. Plant Physiology, 2017, 175, 641-651.	2.3	24
18	CNVs into the wild: screening the genomes of conifer trees (Picea spp.) reveals fewer gene copy number variations in hybrids and links to adaptation. BMC Genomics, 2017, 18, 97.	1.2	32

#	Article	IF	CITATIONS
19	Development of a Traceability System Based on a SNP Array for Large-Scale Production of High-Value White Spruce (Picea glauca). Frontiers in Plant Science, 2017, 8, 1264.	1.7	14
20	<i>In vivo</i> function of <i>Pgî²glu-1</i> in the release of acetophenones in white spruce. PeerJ, 2017, 5, e3535.	0.9	7
21	Dissection of expressionâ€quantitative trait locus and allele specificity using a haploid/diploid plant system – insights into compensatory evolution of transcriptional regulation within populations. New Phytologist, 2016, 211, 159-171.	3.5	28
22	Genetic architecture of wood properties based on association analysis and coâ€expression networks in white spruce. New Phytologist, 2016, 210, 240-255.	3.5	43
23	Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. New Phytologist, 2016, 209, 44-62.	3.5	73
24	Biochar and plant growth promoting rhizobacteria effects on switchgrass (Panicum virgatum cv.) Tj ETQq0 0 0 rg and Bioenergy, 2016, 95, 167-173.	gBT /Over 2.9	lock 10 Tf 50 21
25	Improved white spruce (<i>Picea glauca</i>) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant Journal, 2015, 83, 189-212.	2.8	200
26	Expression of the βâ€glucosidase gene <i>Pgβgluâ€1</i> underpins natural resistance of white spruce against spruce budworm. Plant Journal, 2015, 81, 68-80.	2.8	52
27	Forest Tree Genomics: Review of Progress. Advances in Botanical Research, 2015, 74, 39-92.	0.5	9
28	Modular organization of the white spruce (<i><scp>P</scp>icea glauca</i>) transcriptome reveals functional organization and evolutionary signatures. New Phytologist, 2015, 207, 172-187.	3.5	35
29	From genotypes to phenotypes: expression levels of genes encompassing adaptive SNPs in black spruce. Plant Cell Reports, 2015, 34, 2111-2125.	2.8	5
30	Carbon dynamics in a biochar-amended loamy soil under switchgrass. Canadian Journal of Soil Science, 2015, 95, 1-13.	0.5	10
31	Identification of nitrogen responsive genes in poplar roots grown under two contrasting nitrogen levels. Plant Root, 2014, 8, 42-54.	0.3	2
32	Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity, 2014, 113, 343-352.	1.2	127
33	What do ecological regions tell us about wood quality? A case study in eastern Canadian white spruce. Canadian Journal of Forest Research, 2014, 44, 1383-1393.	0.8	13
34	Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics, 2014, 15, 1048.	1,2	93
35	Opposite action of R2R3-MYBs from different subgroups on key genes of the shikimate and monolignol pathways in spruce. Journal of Experimental Botany, 2014, 65, 495-508.	2.4	34
36	Large-scale screening of transcription factor–promoter interactions in spruce reveals a transcriptional network involved in vascular development. Journal of Experimental Botany, 2014, 65, 2319-2333.	2.4	59

#	Article	IF	CITATIONS
37	Insights into Conifer Giga-Genomes. Plant Physiology, 2014, 166, 1724-1732.	2.3	164
38	Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size. BMC Plant Biology, 2014, 14, 95.	1.6	46
39	Potential link between biotic defense activation and recalcitrance to induction of somatic embryogenesis in shoot primordia from adult trees of white spruce (Picea glauca). BMC Plant Biology, 2013, 13, 116.	1.6	42
40	Differential gene expression patterns in white spruce newly formed tissue on board the International Space Station. Advances in Space Research, 2013, 52, 760-772.	1.2	12
41	Are longâ€lived trees poised for evolutionary change? Single locus effects in the evolution of gene expression networks in spruce. Molecular Ecology, 2013, 22, 2369-2379.	2.0	20
42	The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, 497, 579-584.	13.7	1,303
43	Assembling the 20 Gb white spruce (<i>Picea glauca</i>) genome from whole-genome shotgun sequencing data. Bioinformatics, 2013, 29, 1492-1497.	1.8	356
44	The Landscape of Nucleotide Polymorphism among 13,500 Genes of the Conifer Picea glauca, Relationships with Functions, and Comparison with Medicago truncatula. Genome Biology and Evolution, 2013, 5, 1910-1925.	1.1	33
45	Development of highâ€density <scp>SNP</scp> genotyping arrays for white spruce (<i><scp>P</scp>icea) Tj E7</i>	ГQq1 1 0.7 2.2	'84314 rgBT 78
46	Genetic Improvement of White Spruce Mechanical Wood Traitsâ€"Early Screening by Means of Acoustic Velocity. Forests, 2013, 4, 575-594.	0.9	63
47	Towards decoding the conifer giga-genome. Plant Molecular Biology, 2012, 80, 555-569.	2.0	91
48	Can wood properties be predicted from the morphological traits of a tree? A canonical correlation study of plantation-grown white spruce. Canadian Journal of Forest Research, 2012, 42, 1518-1529.	0.8	16
49	Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression. BMC Genomics, 2012, 13, 434.	1.2	60
50	Association Genetics of Wood Physical Traits in the Conifer White Spruce and Relationships With Gene Expression. Genetics, 2011, 188, 197-214.	1.2	131
51	The influence of cambial age on breeding for wood properties in Picea glauca. Tree Genetics and Genomes, 2011, 7, 641-653.	0.6	30
52	Gene mapping in white spruce (P. glauca): QTL and association studies integrating population and expression data. BMC Proceedings, 2011, 5 , .	1.8	2
53	Competing MYB networks as switches in primary and secondary metabolism in spruce. BMC Proceedings, 2011, 5, .	1.8	1
54	A White Spruce Gene Catalog for Conifer Genome Analyses Â. Plant Physiology, 2011, 157, 14-28.	2.3	143

#	Article	IF	CITATIONS
55	Molecular Evolution of Regulatory Genes in Spruces from Different Species and Continents: Heterogeneous Patterns of Linkage Disequilibrium and Selection but Correlated Recent Demographic Changes. Journal of Molecular Evolution, 2010, 70, 371-386.	0.8	40
56	Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees. BMC Plant Biology, 2010, 10, 273.	1.6	39
57	<i>EgMYB1</i> , an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in <i>Arabidopsis</i> and poplar. New Phytologist, 2010, 188, 774-786.	3. 5	180
58	High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Physiology, 2010, 30, 1273-1289.	1.4	52
59	Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. Journal of Experimental Botany, 2010, 61, 3847-3864.	2.4	146
60	Genetic control of wood properties in Picea glauca— an analysis of trends with cambial age. Canadian Journal of Forest Research, 2010, 40, 703-715.	0.8	82
61	SABATH methyltransferases from white spruce (Picea glauca): gene cloning, functional characterization and structural analysis. Tree Physiology, 2009, 29, 947-957.	1.4	20
62	Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants. Plant Cell Reports, 2009, 28, 787-800.	2.8	34
63	Evaluation of the impact of single nucleotide polymorphisms and primer mismatches on quantitative PCR. BMC Biotechnology, 2009, 9, 75.	1.7	73
64	Expression profiling and functional analysis of <i>Populus</i> WRKY23 reveals a regulatory role in defense. New Phytologist, 2009, 184, 48-70.	3 . 5	77
65	Identification of conserved core xylem gene sets: conifer cDNA microarray development, transcript profiling and computational analyses. New Phytologist, 2008, 180, 766-786.	3 . 5	87
66	Functional genomics of PycR, a LysR family transcriptional regulator essential for maintenance of Pseudomonas aeruginosa in the rat lung. Microbiology (United Kingdom), 2008, 154, 2106-2118.	0.7	18
67	Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. Journal of Experimental Botany, 2008, 59, 3925-3939.	2.4	183
68	ForestTreeDB: a database dedicated to the mining of tree transcriptomes. Nucleic Acids Research, 2007, 35, D888-D894.	6.5	22
69	Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Science, 2007, 173, 542-549.	1.7	123
70	Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. Forest Ecology and Management, 2007, 238, 92-106.	1.4	119
71	Diverse developmental mutants revealed in an activation-tagged population of poplarThis article is one of a selection of papers published on the Special Issue of Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1071-1081.	1.2	31
72	Effects of Increased Nitrogen Supply on the Lignification of Poplar Wood. Journal of Agricultural and Food Chemistry, 2007, 55, 10306-10314.	2.4	64

#	Article	IF	Citations
73	Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biology, 2007, 7, 17.	1.6	121
74	Short-term effects of nitrogen availability on wood formation and fibre properties in hybrid poplar. Trees - Structure and Function, 2007, 21, 249-259.	0.9	80
75	Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genetics and Genomes, 2006, 2, 1-9.	0.6	66
76	Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs. BMC Genomics, 2006, 7, 174.	1.2	68
77	Age trends in genotypic variation of wood density and its intra-ring components in young poplar hybrid crosses. Annals of Forest Science, 2006, 63, 673-685.	0.8	14
78	Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics, 2005, 6, 144.	1.2	119
79	Large-scale statistical analysis of secondary xylem ESTs in pine. Plant Molecular Biology, 2005, 57, 203-224.	2.0	42
80	A robust neural networks approach for spatial and intensity-dependent normalization of cDNA microarray data. Bioinformatics, 2005, 21, 2674-2683.	1.8	35
81	Gene Expression during Formation of Earlywood and Latewood in Loblolly Pine: Expression Profiles of 350 Genes. Plant Biology, 2004, 6, 654-663.	1.8	47
82	Report on the Forest Trees Workshop at the Plant and Animal Genome Conference. Comparative and Functional Genomics, 2003, 4, 229-238.	2.0	10
83	Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2003, 41, 677-687.	2.8	115
84	NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Organic and Biomolecular Chemistry, 2003, 1, 268-281.	1.5	145
85	PULPING AND BLEACHING OF PARTIALLY CAD-DEFICIENT WOOD. Journal of Wood Chemistry and Technology, 2002, 22, 235-248.	0.9	16
86	Heterologous Array Analysis in Pinaceae: Hybridization of Pinus taedac DNA Arrays with cDNA from Needles and Embryogenic Cultures of P. taeda, P. sylvestrisor Picea abies. Comparative and Functional Genomics, 2002, 3, 306-318.	2.0	45
87	PULPING AND BLEACHING OF CAD-DEFICIENT WOOD. Journal of Wood Chemistry and Technology, 2001, 21, 1-17.	0.9	20
88	PYROLYSIS MASS SPECTRAL CHARACTERIZATION OF WOOD FROM CAD-DEFICIENT PINE. Journal of Wood Chemistry and Technology, 2001, 21, 19-29.	0.9	21
89	Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry, 2001, 57, 993-1003.	1.4	195
90	Lignin Structure in a Mutant Pine Deficient in Cinnamyl Alcohol Dehydrogenase. Journal of Agricultural and Food Chemistry, 2000, 48, 2326-2331.	2.4	62

#	Article	IF	CITATIONS
91	Average effect of a mutation in lignin biosynthesis in loblolly pine. Theoretical and Applied Genetics, 1999, 99, 705-710.	1.8	43
92	Unexpected variation in lignin. Current Opinion in Plant Biology, 1999, 2, 145-152.	3.5	213
93	Modified Lignin and Delignification with a CAD-Deficient Loblolly Pine. Holzforschung, 1999, 53, 403-410.	0.9	35
94	Characterization of NAD-dependent mannitol dehydrogenase from celery as affected by ions, chelators, reducing agents and metabolites. Plant Science, 1998, 131, 43-51.	1.7	21
95	RECENT ADVANCES IN UNDERSTANDING LIGNIN BIOSYNTHESIS. Annual Review of Plant Biology, 1998, 49, 585-609.	14.2	404
96	Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8255-8260.	3.3	194
97	Abnormal Lignin in a Loblolly Pine Mutant. Science, 1997, 277, 235-239.	6.0	311
98	Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution. Molecular Genetics and Genomics, 1995, 247, 537-545.	2.4	71