Tuncer Ãaykara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4733249/publications.pdf

Version: 2024-02-01

2,533	172457	302126
citations	h-index	g-index
132	132	3183
docs citations	times ranked	citing authors
		2,533 29 citations h-index 132 132

#	Article	IF	CITATIONS
1	Toward the Replacement of Long-Chain Perfluoroalkyl Compounds: Perfluoropolyether-Based Low Surface Energy Grafted Nanocoatings. ACS Applied Polymer Materials, 2022, 4, 980-986.	4.4	1
2	Grafting parameters and surface free energy components of photosensitive poly(methacrylated) Tj ETQq0 0 0 rg	BT/Qverlo	ock ₂ 10 Tf 50 7
3	Microwave-Assisted Synthesis of Stretchable and Transparent Poly(Ethyleneglycol-Sebacate) Elastomers with Autonomous Self-Healing and Capacitive Properties. Soft Robotics, 2021, 8, 262-272.	8.0	2
4	Synthesis of hyaluronated poly(exo-7-oxabicyclo[2.2.1]hept-5-en-2,3-dicarboxylic anhydride) brushes via a combination of surface-initiated ring-opening metathesis polymerization and thiol-ene click reaction. Chemical Papers, 2021, 75, 1629-1638.	2.2	1
5	Grafting density of oligo-bottle-brushes on silicon surface: effect of mole fraction of RAFT agent-functionalized alkenes in mixed self-assembled monolayers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 479-487.	2.2	1
6	Surfaceâ€initiated singleâ€electron transfer reversible addition–fragmentation chain transfer polymerization of 2â€hydroxyethyl acrylamide on silicon substrate at ambient temperature. Journal of Polymer Science Part A, 2019, 57, 1140-1146.	2.3	2
7	Photo-control of poly(N-[4-[(4-Nitrophenyl)azo]phenyl]acrylamide) brushes on graphene oxide coated silicon surface. Chemical Papers, 2019, 73, 927-935.	2.2	O
8	Ibuprofenâ€imprinted ultrathin poly[<i>N</i> â€(2â€hydroxypropyl) methacrylamide] films. Journal of Applied Polymer Science, 2018, 135, 45707.	2.6	4
9	SERS detection of polyaromatic hydrocarbons on a $\hat{l}^2 \hat{a} \in \mathcal{E}$ yclodextrin containing polymer brush. Journal of Raman Spectroscopy, 2018, 49, 452-461.	2.5	16
10	A novel route to prepare a multilayer system via the combination of interface-mediated catalytic chain transfer polymerization and thiol-ene click chemistry. Materials Science and Engineering C, 2017, 74, 103-109.	7.3	2
11	SERS detection of hepatitis B virus DNA in a temperatureâ€responsive sandwichâ€hybridization assay. Journal of Raman Spectroscopy, 2017, 48, 668-672.	2.5	35
12	Glycopolymer brushes with specific protein recognition property. Journal of Applied Polymer Science, 2017, 134, 45238.	2.6	4
13	Alginate Blends of Poly(vinyl alcohol) and Poly(N -vinyl-2-pyrrolidone) for Higher Physicomechanical Properties., 2017,, 565-579.		О
14	Synthesis of poly(N-(2-hydroxypropyl) methacrylamide) brushes by interface-mediated RAFT polymerization. RSC Advances, 2016, 6, 45259-45264.	3.6	12
15	Synthesis of dual-functional poly(6-azidohexylmethacrylate) brushes by a RAFT agent carrying carboxylic acid end groups. Journal of Polymer Science Part A, 2015, 53, 1696-1706.	2.3	11
16	Fabrication of a SERS based aptasensor for detection of ricin B toxin. Journal of Materials Chemistry B, 2015, 3, 306-315.	5.8	42
17	A new plasmonic device made of gold nanoparticles and temperature responsive polymer brush on a silicon substrate. Journal of Colloid and Interface Science, 2015, 448, 215-221.	9.4	12
18	Micro-patterned polymer brushes by a combination of photolithography and interface-mediated RAFT polymerization for DNA hybridization. Polymer Chemistry, 2015, 6, 6812-6818.	3.9	7

#	Article	IF	CITATIONS
19	Synthesis and stability of BODIPY-based fluorescent polymer brushes at different pHs. Journal of Polymer Science Part A, 2014, 52, 3586-3596.	2.3	16
20	Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles. Analytica Chimica Acta, 2014, 817, 33-41.	5.4	66
21	Preparation and characterization of polysaccaride interpolymer complexes: lâ€PVA/ιâ€carrageenan. Journal of Applied Polymer Science, 2013, 127, 500-507.	2.6	7
22	A SERS-Based Sandwich Assay for Ultrasensitive and Selective Detection of Alzheimer's Tau Protein. Biomacromolecules, 2013, 14, 3001-3009.	5.4	76
23	Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol. Analyst, The, 2013, 138, 7238.	3.5	51
24	RAFTâ€mediated synthesis and temperatureâ€induced responsive properties of poly(2â€(2â€methoxyethoxy)ethyl methacrylate) brushes. Journal of Polymer Science Part A, 2013, 51, 954-962.	2.3	25
25	Poly(2-(dimethylamino)ethyl methacrylate) brushes fabricated by surface-mediated RAFT polymerization and their response to pH. European Polymer Journal, 2013, 49, 3350-3358.	5.4	35
26	A new selenium-based RAFT agent for surface-initiated RAFT polymerization of 4-vinylpyridine. Polymer, 2013, 54, 5345-5350.	3.8	18
27	Preparation of oligoâ€ <i>N</i> à€isopropylacrylamide brushes with OH and COOH endâ€groups via surfaceâ€initiated NMP. Journal of Applied Polymer Science, 2013, 129, 383-390.	2.6	11
28	Synthesis of superparamagnetic and thermoresponsive hybrid nanoparticles via surface-mediated RAFT polymerization of di(ethylene glycol) ethyl ether acrylate and (oligoethylene glycol) methyl ether acrylate. Journal of Polymer Science Part A, 2013, 51, 3420-3428.	2.3	7
29	RAFT-mediated synthesis of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] brushes for quantitative DNA immobilization. Materials Science and Engineering C, 2013, 33, 111-120.	7.3	20
30	Novel pHâ€responsive mixedâ€charge copolymer brushes based on carboxylic acid and quaternary amine monomers. Journal of Polymer Science Part A, 2013, 51, 1612-1619.	2.3	19
31	Stimuliâ€responsive diblock copolymer brushes via combination of "click chemistryâ€and living radical polymerization. Journal of Polymer Science Part A, 2013, 51, 2677-2685.	2.3	19
32	Construction of myoglobin imprinted polymer films by grafting from silicon surface. Journal of Materials Chemistry, 2012, 22, 636-642.	6.7	31
33	Biofunctional oligoN-isopropylacrylamide brushes on silicon wafer surface. Journal of Materials Chemistry, 2012, 22, 13231.	6.7	21
34	Controlled grafting of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] on hydrogen-terminated silicon substrate by surface-initiated RAFT polymerization. Reactive and Functional Polymers, 2012, 72, 588-595.	4.1	18
35	Surface chemical conversion of 3-glycidoxypropyldimethylethoxysilane on hydroxylated silicon surface: FT-IR, contact angle and ellipsometry analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 99, 144-149.	3.9	2
36	Formation of poly(octadecyl acrylate) brushes on a silicon wafer surface. Polymer International, 2012, 61, 581-586.	3.1	4

#	Article	IF	CITATIONS
37	High density cationic polymer brushes from combined "click chemistry―and RAFTâ€mediated polymerization. Journal of Polymer Science Part A, 2012, 50, 2999-3007.	2.3	19
38	RAFTâ€mediated synthesis of poly[(oligoethylene glycol) methyl ether acrylate] brushes for biological functions. Journal of Polymer Science Part A, 2012, 50, 4443-4450.	2.3	21
39	Controlling immunoglobulin G orientation on a protein-A terminated bilayer system. Materials Science and Engineering C, 2012, 32, 1107-1111.	7.3	5
40	Photocontrollable DNA hybridization on reversibly photoresponsive surfaces. Journal of Materials Chemistry, 2011, 21, 10415.	6.7	13
41	Molecular design of photoswitchable surfaces with controllable wettability. Journal of Materials Chemistry, 2011, 21, 3189.	6.7	31
42	A facile route to end-functionalized poly(N-isopropylacrylamide) brushes synthesized by surface-initiated SET-LRP. Reactive and Functional Polymers, 2011, 71, 1089-1095.	4.1	23
43	Synthesis of cationic <i>N</i> â€{3â€(dimethylamino)propyl]methacrylamide brushes on silicon wafer via surfaceâ€initiated RAFT polymerization. Journal of Polymer Science Part A, 2011, 49, 423-431.	2.3	37
44	SET–LRP of <i>N</i> à€isopropylacrylamide in the presence of chain transfer agent. Journal of Polymer Science Part A, 2011, 49, 2818-2822.	2.3	12
45	Synthesis of poly(<i>N</i> à€isopropylacrylamide) with a low molecular weight and a low polydispersity index by singleâ€electron transfer living radical polymerization. Journal of Polymer Science Part A, 2011, 49, 5116-5123.	2.3	7
46	Preparation of amidoximated poly(glycidyl methacrylate) microbeads. Polymer International, 2011, 60, 141-145.	3.1	13
47	DNA adsorption on poly(<i>N</i> , <i>N</i> ,â€dimethylacrylamide)â€grafted chitosan hydrogels. Journal of Applied Polymer Science, 2011, 120, 1420-1425.	2.6	8
48	Immobilization of immunoglobulin G in a highly oriented manner on a protein-A terminated multilayer system. Applied Surface Science, 2011, 257, 2111-2117.	6.1	11
49	Swelling characteristics of poly(<i>N</i> â€isopropylmethacrylamideâ€ <i>co</i> â€itaconic acid) gels prepared in various conditions. Journal of Applied Polymer Science, 2010, 117, 817-823.	2.6	12
50	Fabrication of ultrahydrophobic poly(lauryl acrylate) brushes on silicon wafer via surface-initiated atom transfer radical polymerization. Applied Surface Science, 2010, 257, 1015-1020.	6.1	23
51	Synthesis of thermoresponsive poly(N-isopropylacrylamide) brush on silicon wafer surface via atom transfer radical polymerization. Thin Solid Films, 2010, 518, 5950-5954.	1.8	42
52	Formation of dicarboxylic acid-terminated monolayers on silicon wafer surface. Surface Science, 2010, 604, 649-653.	1.9	8
53	Construction of hydroxylâ€terminated poly(<i>N</i> â€isopropylacrylamide) brushes on silicon wafer via surfaceâ€initiated atom transfer radical polymerization. Journal of Polymer Science Part A, 2010, 48, 3880-3887.	2.3	22
54	Kinetic analysis of surfaceâ€initiated SETâ€LRP of poly(<i>N</i> à€isopropylacrylamide). Journal of Polymer Science Part A, 2010, 48, 5842-5847.	2.3	24

#	Article	IF	Citations
55	Dependence of Protein Recognition of Temperatureâ€Sensitive Imprinted Hydrogels on Preparation Temperature. Macromolecular Bioscience, 2009, 9, 421-428.	4.1	28
56	Preparation of polyacrylamide hydrogels at various charge densities by postmodification. Journal of Applied Polymer Science, 2009, 111, 108-113.	2.6	14
57	Preparation and characterization of poly(<i>N</i> â€ <i>tert</i> â€butylacrylamideâ€ <i>co</i> â€acrylamide) ferrogel. Journal of Applied Polymer Science, 2009, 112, 800-804.	2.6	25
58	Preparation of comb-type grafted hydrogels composed of polyacrylamide and chitosan and their use for DNA adsorption. Journal of Applied Polymer Science, 2009, 111, 1862-1868.	2.6	5
59	Reentrant phase transition and fast responsive behaviors of poly $\{\langle i\rangle N\langle i\rangle \hat{a}\in \{3\hat{a}\in \{dimethylaminopropyl\}\}\}$ methacrylamide} hydrogels prepared in poly(ethylene glycol) solutions. Journal of Applied Polymer Science, 2009, 113, 547-552.	2.6	4
60	Preparation, characterization, and surface energetics of hydroxypropyl cellulose/polyethylenimine blends. Journal of Applied Polymer Science, 2009, 114, 2751-2754.	2.6	6
61	Preparation, characterization and surface pKa values of poly(N-vinyl-2-pyrrolidone)/chitosan blend films. Applied Surface Science, 2009, 255, 5979-5983.	6.1	36
62	DNA immobilization on polymer-modified Si surface by controlling pH. Applied Surface Science, 2009, 255, 6571-6576.	6.1	11
63	Myoglobin adsorption onto poly(glycidyl methacrylate) microbeads with surface functionalized iminodiacetic acid. Materials Science and Engineering C, 2009, 29, 20-24.	7.3	7
64	Molecularly imprinted hydrogels for fibrinogen recognition. Reactive and Functional Polymers, 2009, 69, 655-659.	4.1	15
65	Hemoglobin recognition of molecularly imprinted hydrogels prepared at different pHs. Analytica Chimica Acta, 2008, 625, 110-115.	5.4	30
66	A new type of poly(glycidyl methacrylate) microbeads with surface grafted iminodiacetic acid: Synthesis and characterization. Polymer Bulletin, 2008, 61, 311-318.	3.3	10
67	Thermo†and pH†induced phase transitions and network parameters of poly(<i>N</i> à€ isopropylacrylamideâ€) Polymer Physics, 2008, 46, 1713-1724.	Tj ETQq1 2.1	1 0.784314 26
68	Effect of Pore-Forming Agent Type on Swelling Properties of Macroporous Poly(N-[3-(dimethylaminopropyl)]-methacrylamide-co-acrylamide) Hydrogels. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 46, 58-64.	2.2	19
69	Preparation and characterization of novel poly(glycidyl methacrylate) beads carrying amidoxime groups. Journal of Applied Polymer Science, 2007, 106, 2126-2131.	2.6	16
70	Thermal, Spectroscopic, and Mechanical Properties of Blend Films of Poly(<i>N</i> -Vinyl-2-Pyrrolidone) and Sodium Alginate. Polymer-Plastics Technology and Engineering, 2007, 46, 737-741.	1.9	29
71	Swelling behaviors of ionic poly(N,N-dimethylacrylamide-co-acrylamide) hydrogels in various media. Journal of Applied Polymer Science, 2007, 104, 2140-2145.	2.6	15
72	Investigation of thermal behavior of poly(2-hydroxyethyl methacrylate-co-itaconic acid) networks. Journal of Applied Polymer Science, 2007, 103, 1602-1607.	2.6	27

#	ARTICLE	IF	CITATIONS
73	Adsorption of surfactant by hydrophobically modified effect of surfactant adsorption on the volume phase transition. Journal of Applied Polymer Science, 2007, 103, 3771-3775.	2.6	3
74	Competitive adsorption of uranyl ions in the presence of Pb(II) and Cd(II) ions by poly(glycidyl) Tj ETQq0 0 0 rgBT Applied Polymer Science, 2007, 104, 4168-4172.	/Overlock 2.6	10 Tf 50 707 12
75	Swelling and network parameters of pHâ€sensitive poly(acrylamideâ€ <i>co</i> â€acrylic acid) hydrogels. Journal of Applied Polymer Science, 2007, 106, 2000-2007.	2.6	48
76	Construction of a novel multilayer system and its use for oriented immobilization of immunoglobulin G. Surface Science, 2007, 601, 4563-4570.	1.9	15
77	Preparation of macroporous poly(acrylamide) hydrogels by radiation induced polymerization technique. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 366-369.	1.4	10
78	Reentrant phase transition and network parameters of hydrophobically modified poly[2-(diethylamino)ethylmethacrylate-co-N-vinyl-2-pyrrolidone/octadecyl acrylate] hydrogels. European Polymer Journal, 2007, 43, 514-521.	5.4	7
79	Preparation and characterization of poly(isobutyl methacrylate) microbeads with grafted amidoxime groups. Radiation Physics and Chemistry, 2007, 76, 1569-1576.	2.8	29
80	Temperature-responsive characteristics of poly(N-isopropylacrylamide) hydrogels with macroporous structure. Polymer International, 2007, 56, 275-282.	3.1	21
81	Swelling characteristics of thermo- sensitive poly[(2-diethylaminoethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T	f 50 422 T	d (methacry
82	Macroporous Poly(Acrylamide) Hydrogels: Swelling and Shrinking Behaviors. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 889-897.	2.2	33
83	Preparation and Characterization of Blend Films of Poly(Vinyl Alcohol) and Sodium Alginate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1113-1121.	2.2	58
84	Surface properties of binary blend films of poly(N-vinyl-2-pyrrolidone) and poly(vinyl alcohol) with sodium alginate. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 426-430.	2.1	15
85	Swelling behavior of poly{N-[3-(dimethylaminopropyl)] methacrylamide-co-acrylamide} hydrogels in aqueous solutions of surfactants. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1645-1652.	2.1	10
86	Surface energetics of poly(N-vinyl-2-pyrrolidone)/chitosan blend films. Applied Surface Science, 2006, 252, 7430-7435.	6.1	19
87	Thermosensitive poly(N-isopropylacrylamide-co-acrylamide) hydrogels: Synthesis, swelling and interaction with ionic surfactants. European Polymer Journal, 2006, 42, 348-355.	5.4	134
88	Synthesis and network structure of ionic poly(N,N-dimethylacrylamide-co-acrylamide) hydrogels: Comparison of swelling degree with theory. European Polymer Journal, 2006, 42, 1437-1445.	5.4	45
89	Effect of the amount and type of the crosslinker on the swelling behavior of temperature-sensitive poly(N-tert-butylacrylamide-co-acrylamide) hydrogels. Colloid and Polymer Science, 2006, 284, 1038-1048.	2.1	29
90	Network parameters and volume phase transition behavior of poly(N-isopropylacrylamide) hydrogels. Journal of Applied Polymer Science, 2006, 101, 1756-1762.	2.6	36

#	Article	IF	CITATIONS
91	Synthesis and network parameters of hydrophobic poly(N-[3-(dimethylaminopropyl)]methacrylamide-co-lauryl acrylate) hydrogels. Journal of Applied Polymer Science, 2006, 101, 4159-4166.	2.6	9
92	PH-dependent swelling behavior and network parametes of ionic poly(N-t-butylacrylamide-co-acrylamide) hydrogels. Journal of Applied Polymer Science, 2006, 102, 1624-1630.	2.6	3
93	Preparation and Swelling Properties of Temperature-Sensitive Semi-Interpenetrating Polymer Networks Composed of Poly[(N-tert-butylacrylamide)-co-acrylamide] and Hydroxypropyl Cellulose. Macromolecular Materials and Engineering, 2006, 291, 1044-1051.	3.6	33
94	Thermosensitive Poly[(2-(diethylamino)ethyl methacrylate)-co-(N,N-dimethylacrylamide)] Cryogels Prepared by a Two-Step Polymerization Method. Macromolecular Materials and Engineering, 2006, 291, 1278-1286.	3.6	3
95	pH/Temperature - Sensitive Imprinted Ionic Poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) Hydrogels for Bovine Serum Albumin. Macromolecular Bioscience, 2005, 5, 1032-1037.	4.1	80
96	External Stimuli-Responsive Characteristics of Ionic Poly[(N,N-diethylaminoethyl) Tj ETQq0 0 0 rgBT /Overlock 10 7 2005, 290, 468-474.	rf 50 547 3.6	Td (methac 8
97	Swelling and Adsorption Properties of Hydrophobic Poly[(N-(3-(dimethylamino)propyl)methacrylamide)-co-(lauryl acrylate)] Hydrogels in Aqueous Solutions of Surfactants. Macromolecular Materials and Engineering, 2005, 290, 869-874.	3.6	16
98	Effect of type and concentration of surfactants on swelling behavior of poly[N-[3-(dimethylamino)propyl]methacrylamide-co- N,N-methylenebis(acrylamide)] hydrogels. Colloid and Polymer Science, 2005, 284, 258-265.	2.1	14
99	pH-responsive ionic poly(N,N-diethylaminoethyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels: Synthesis and swelling properties. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2819-2828.	2.1	11
100	Swelling–Shrinking Behavior of Poly(Acrylamideâ€ <i>co</i> â€itaconic Acid) Hydrogels in Water and Aqueous NaCl Solutions. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 105-111.	2.2	13
101	Solubility Parameters of Crossâ€Linked Poly(Nâ€Vinylâ€2â€pyrrolidoneâ€coâ€crotonic Acid) Copolymers Prepared by γâ€Rayâ€Induced Polymerization Technique. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 971-979.	d 2.2	13
102	Determination of the complex formation constants for some water-soluble polymers with trivalent metal ions by differential pulse polarography. Colloid and Polymer Science, 2004, 282, 1282-1285.	2.1	19
103	Thermal behavior and network structure of poly(N -vinyl-2-pyrrolidone-crotonic acid) hydrogels prepared by radiation-induced polymerization. Polymers for Advanced Technologies, 2004, 15, 134-139.	3.2	12
104	Network structure and swelling-shrinking behaviors of pH-sensitive poly(acrylamide-co-itaconic acid) hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2586-2594.	2.1	36
105	Surface free-energy analysis of poly(N-vinyl-2-pyrrolidone-crotonic acid) copolymers prepared by \hat{I}^3 -ray-induced polymerization technique. Journal of Applied Polymer Science, 2004, 91, 1893-1897.	2.6	9
106	Determination of average molecular weight between crosslinks and polymer-solvent interaction parameters of poly(acrylamide-g-ethylene diamine tetraacetic acid) polyelectrolyte hydrogels. Journal of Applied Polymer Science, 2004, 91, 2168-2175.	2.6	15
107	Effect of maleic acid content on network structure and swelling properties of poly(N-isopropylacrylamide-co-maleic acid) polyelectrolyte hydrogels. Journal of Applied Polymer Science, 2004, 92, 763-769.	2.6	23
108	Investigation of ZnO-release behavior of poly(N-isopropylacrylamide-co-maleic acid)/ZnO composite hydrogels by differential pulse polarography. Journal of Applied Polymer Science, 2004, 92, 2411-2414.	2.6	2

#	Article	IF	CITATIONS
109	Competitive removal of Pb2+, Cd2+, and Zn2+by poly(acrylamide-co-maleic acid) hydrogels/differential pulse polarographic determination. Journal of Applied Polymer Science, 2004, 94, 2401-2406.	2.6	5
110	Effects of Temperature and Surfactants on the Equilibrium Swelling Behavior of Poly[acrylamide-co-(itaconic acid)] Hydrogels. Macromolecular Materials and Engineering, 2004, 289, 548-551.	3.6	11
111	The effect of solvent composition on swelling and shrinking properties of poly(acrylamide-co-itaconic acid) hydrogels. European Polymer Journal, 2004, 40, 2605-2609.	5.4	32
112	Determination of the competitive adsorption of heavy metal ions on poly(n-vinyl-2-pyrrolidone/acrylic) Tj ETQq0 0 2013-2018.	0 rgBT /Ov 2.6	verlock 10 Tr 30
113	Polarographic determination of the competitive adsorption of U(VI), Pb(II), and Cd(II) ions on poly(N-vinyl-2-pyrrolidone-g-citric acid) hydrogels. Journal of Applied Polymer Science, 2003, 89, 2019-2024.	2.6	2
114	Enhancement of uranyl ion uptake by the prestructuring of poly(2-hydroxyethyl methacrylate itaconic) Tj ETQq0 0 Applied Polymer Science, 2003, 90, 2385-2390.	0 rgBT /O [,] 2.6	verlock 10 T 8
115	Network structure and swelling behavior of poly(acrylamide/crotonic acid) hydrogels in aqueous salt solutions. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1656-1664.	2.1	43
116	The Effect of Copolymer Composition on Surface Freeâ€Energy of Poly(2â€Hydroxyethyl) Tj ETQq0 0 0 rgBT /Over Chemistry, 2003, 40, 1173-1182.	lock 10 Tf 2.2	50 467 Td (6
117	Radiation synthesis of poly(N-vinyl-2-pyrrolidone-g-tartaric acid) hydrogels Âand their swelling behaviors. Polymers for Advanced Technologies, 2002, 13, 87-93.	3.2	9
118	Influence of gel composition on the solubility parameter of poly(2-hydroxyethyl) Tj ETQq0 0 0 rgBT /Overlock 10 T 1995-2003.	f 50 387 To 2.1	d (methacry 34
119	POLAROGRAPHIC DETERMINATION OF URANYL ION ADSORPTION ON POLY-(2-HYDROXYETHYL) Tj ETQq1 1 0.78-	4 <u>3.1</u> 4 rgBT	/Overlock 1
120	Radiation synthesis and uranyl-ion adsorption of poly(2-hydroxyethyl methacrylate/maleic acid) hydrogels. Journal of Polymer Science Part A, 2001, 39, 277-283.	2.3	23
121	The effect of gel composition on the uranyl ions adsorption capacity of poly(N-vinyl) Tj ETQq1 1 0.784314 rgBT /C 2000, 77, 1037-1043.		O Tf 50 267
122	Effect of pH, ionic strength, and temperature on uranyl ion adsorption by poly(N-vinyl) Tj ETQq0 0 0 rgBT /Overloc	k ₂ 10 Tf 50	222 Td (2-p
123	Equilibrium swelling behavior of pH- and temperature-sensitive poly(N-vinyl 2-pyrrolidone-g-citric) Tj ETQq1 1 0.78-2063-2071.	4314 rgBT 2.1	/Overlock 1 39
124	Characterization of network structure of poly(N-vinyl 2-pyrrolidone/acrylic acid) polyelectrolyte hydrogels by swelling measurements. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 3309-3317.	2.1	13
125	Adsorption of $\hat{l}\pm$ -amylase onto poly(N-vinyl 2-pyrrolidone/itaconic acid) hydrogels. Nuclear Instruments & Methods in Physics Research B, 1999, 151, 238-241.	1.4	17
126	Gamma-rays induced copolymerization of vinyl triethoxy silane and methyl methacrylate: Their spectroscopic characterization. Journal of Applied Polymer Science, 1999, 73, 141-147.	2.6	2

Tuncer Çaykara

#	Article	IF	CITATIONS
127	Surface free energy analysis of vinyl triethoxy silane-methyl methacrylate copolymers and their homopolymer blends. Journal of Applied Polymer Science, 1998, 69, 1551-1556.	2.6	10
128	Effect of preparation methods on thermal properties of poly(acrylic acid)/silica composites. Journal of Applied Polymer Science, 1998, 70, 891-895.	2.6	19
129	\hat{I}^3 -Ray induced graft copolymerization of methyl methacrylate onto poly(\hat{I}^2 -hydroxynonanoate). Polymer Bulletin, 1998, 41, 53-60.	3.3	10
130	The effect of filler type on the thermal degradation of inorganic filled poly(2-hydroxyethyl) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 622 Td 10
131	The effect of preparation methods on the thermal properties of poly(acrylic acid) / alumina composites. Polymer Composites, 1998, 19, 193-197.	4.6	9