Peter Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4733229/publications.pdf

Version: 2024-02-01

361045 433756 1,280 95 20 31 citations h-index g-index papers 114 114 114 922 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	On the training of a neural network for online path planning with offline path planning algorithms. International Journal of Information Management, 2021, 57, 102142.	10.5	62
2	Multi-objective co-operative co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems. Journal of Cleaner Production, 2017, 156, 124-136.	4.6	61
3	UAV Mission Planning Resistant to Weather Uncertainty. Sensors, 2020, 20, 515.	2.1	59
4	Energy Consumption in Unmanned Aerial Vehicles: A Review of Energy Consumption Models and Their Relation to the UAV Routing. Advances in Intelligent Systems and Computing, 2019, , 173-184.	0.5	55
5	Metaheuristic algorithms for balancing robotic assembly lines with sequence-dependent robot setup times. Applied Mathematical Modelling, 2019, 65, 256-270.	2.2	50
6	Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line. Engineering Optimization, 2018, 50, 877-893.	1.5	44
7	Unmanned Aerial Vehicle Routing Problems: A Literature Review. Applied Sciences (Switzerland), 2020, 10, 4504.	1.3	41
8	A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal. Annals of Operations Research, 2016, 242, 285-301.	2.6	40
9	Planning deliveries with UAV routing under weather forecast and energy consumption constraints. IFAC-PapersOnLine, 2019, 52, 820-825.	0.5	39
10	An integrated approach for line balancing and AGV scheduling towards smart assembly systems. Assembly Automation, 2020, 40, 219-234.	1.0	35
11	Advanced planning and scheduling technology. Production Planning and Control, 2011, 22, 800-808.	5.8	34
12	Co-evolutionary particle swarm optimization algorithm for two-sided robotic assembly line balancing problem. Advances in Mechanical Engineering, 2016, 8, 168781401666790.	0.8	34
13	Zoning a Service Area of Unmanned Aerial Vehicles for Package Delivery Services. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 97, 719-731.	2.0	33
14	Convex Decomposition for a Coverage Path Planning for Autonomous Vehicles: Interior Extension of Edges. Sensors, 2019, 19, 4165.	2.1	32
15	An investigation of forecast horizon and observation fit's influence on an econometric rate forecast model in the liner shipping industry. Maritime Policy and Management, 2014, 41, 667-682.	1.9	30
16	A constraint-driven approach to food supply chain management. Industrial Management and Data Systems, 2017, 117, 2115-2138.	2.2	25
17	Model and migrating birds optimization algorithm for two-sided assembly line worker assignment and balancing problem. Soft Computing, 2019, 23, 11263-11276.	2.1	24
18	Analyzing and evaluating product demand interdependencies. Computers in Industry, 2010, 61, 869-876.	5.7	22

#	Article	IF	Citations
19	Optimizing supply chain waste management through the use of RFID technology. , 2010, , .		22
20	A Solution Approach for UAV Fleet Mission Planning in Changing Weather Conditions. Applied Sciences (Switzerland), 2019, 9, 3972.	1.3	22
21	Scheduling of Mobile Robots with Preemptive Tasks. Advances in Intelligent Systems and Computing, 2014, , 19-27.	0.5	22
22	The impact of stochastic lead times on the bullwhip effect under correlated demand and moving average forecasts. Omega, 2020, 93, 102033.	3.6	20
23	Unmanned aerial vehicle set covering problem considering fixed-radius coverage constraint. Computers and Operations Research, 2020, 119, 104936.	2.4	20
24	MILP models and metaheuristic for balancing and sequencing of mixed-model two-sided assembly lines. European Journal of Industrial Engineering, 2017, $11,353$.	0.5	19
25	Comparison of Path Planning Algorithms for an Unmanned Aerial Vehicle Deployment Under Threats. IFAC-PapersOnLine, 2019, 52, 1978-1983.	0.5	18
26	A case of cost estimation in an engineer-to-order company moving towards mass customisation. International Journal of Mass Customisation, 2012, 4, 239.	1.2	15
27	Mathematical models and simulated annealing algorithms for the robotic assembly line balancing problem. Assembly Automation, 2018, 38, 420-436.	1.0	15
28	Factors Affecting Energy Consumption of Unmanned Aerial Vehicles: An Analysis of How Energy Consumption Changes in Relation to UAV Routing. Advances in Intelligent Systems and Computing, 2019, , 228-238.	0.5	13
29	Cyclic Steady State Refinement: Multimodal Processes Perspective. International Federation for Information Processing, 2012, , 18-26.	0.4	13
30	Speed optimization algorithm with routing to minimize fuel consumption under time-dependent travel conditions. Production and Manufacturing Research, 2020, 8, 1-19.	0.9	12
31	An Empirical Investigation of Lead Time Distributions. Lecture Notes in Computer Science, 2014, , 435-442.	1.0	12
32	Developing location indicators for Agricultural Service Center: a Delphi–TOPSIS–FAHP approach. Production and Manufacturing Research, 2015, 3, 124-148.	0.9	10
33	Lead Times – Their Behavior and the Impact on Planning and Control in Supply Chains. Management and Production Engineering Review, 2017, 8, 30-40.	1.4	9
34	Heuristics for solving a multi-model robotic assembly line balancing problem. Production and Manufacturing Research, 2017, 5, 410-424.	0.9	9
35	Local search methods for type I mixed-model two-sided assembly line balancing problems. Memetic Computing, 2021, 13, 111-130.	2.7	9
36	Order Quantity Distributions: Estimating an Adequate Aggregation Horizon. Management and Production Engineering Review, 2016, 7, 39-48.	1.4	8

#	Article	IF	Citations
37	The impact of stochastic lead times on the bullwhip effect $\hat{a} \in \hat{a}$ a theoretical insight. Production and Manufacturing Research, 2018, 6, 190-200.	0.9	8
38	UAVs Fleet Mission Planning Subject to Weather Fore-Cast and Energy Consumption Constraints. Advances in Intelligent Systems and Computing, 2020, , 104-114.	0.5	8
39	A Declarative Modelling Framework for Routing of Multiple UAVs in a System with Mobile Battery Swapping Stations. Advances in Intelligent Systems and Computing, 2019, , 429-441.	0.5	8
40	Artificial bee colony algorithms for two-sided assembly line worker assignment and balancing problem. Advances in Intelligent Systems and Computing, 2018, , 11-18.	0.5	7
41	A Proactive Approach to Resistant UAV Mission Planning. Advances in Intelligent Systems and Computing, 2020, , 112-124.	0.5	7
42	Pre-announcements of price increase intentions in liner shipping spot markets. Transportation Research, Part A: Policy and Practice, 2017, 95, 109-125.	2.0	6
43	Application of Particle Swarm Optimization to Solve Robotic Assembly Line Balancing Problems. , 2017, , 239-267.		6
44	A simple and robust Monte Carlo hybrid local search algorithm for the facility location problem. Engineering Optimization, 2019, 51, 832-845.	1.5	6
45	Multi Criteria Decision Making for the Multi-Satellite Image Acquisition Scheduling Problem. Sensors, 2020, 20, 1242.	2.1	6
46	Two strategies of two-level facility network design for autonomous ground vehicle operations. Production and Manufacturing Research, 2018, 6, 494-506.	0.9	5
47	Model of decision support for the configuration of manufacturing system. IFAC-PapersOnLine, 2019, 52, 826-831.	0.5	5
48	Application of Particle Swarm Optimization to Maximize Efficiency of Straight and U-Shaped Robotic Assembly Lines. Advances in Intelligent Systems and Computing, 2016, , 525-533.	0.5	4
49	Milk-run routing and scheduling subject to different pick-up/delivery profiles and congestion-avoidance constraints. IFAC-PapersOnLine, 2019, 52, 313-320.	0.5	4
50	Dynamic Planning of Mobile Service Teams' Mission Subject to Orders Uncertainty Constraints. Applied Sciences (Switzerland), 2020, 10, 8872.	1.3	4
51	Lead Times and Order Sizes—A not so Simple Relationship. Advances in Intelligent Systems and Computing, 2016, , 65-75.	0.5	4
52	The bullwhip effect in supply chains with stochastic lead times. Mathematical Economics, 2013, , .	0.1	4
53	Parameter-free and cooperative local search algorithms for graph colouring. Soft Computing, 2021, 25, 15035-15050.	2.1	4
54	Reinforcement Learning for Resource Constrained Project Scheduling Problem with Activity Iterations and Crashing. IFAC-PapersOnLine, 2020, 53, 10493-10497.	0.5	4

#	Article	IF	Citations
55	A GRASP-Based Approach for Planning UAV-Assisted Search and Rescue Missions. Sensors, 2022, 22, 275.	2.1	4
56	A decision support system for waste collection management and its potential improvement with Radio-Frequency Identification Technology (RFID). International Journal of Environmental Technology and Management, 2012, 15, 305.	0.1	3
57	Agricultural Service Center Location Problem: Concept and a MCDM Solution Approach. Lecture Notes in Computer Science, 2014, , 611-617.	1.0	3
58	Intelligent manufacturing/production systems: Modeling, algorithms, and optimization. Advances in Mechanical Engineering, 2018, 10, 168781401881950.	0.8	3
59	Preface: operations research for transportation. Annals of Operations Research, 2019, 273, 1-3.	2.6	3
60	Instance Scale, Numerical Properties and Design of Metaheuristics: A Study for the Facility Location Problem. IFAC-PapersOnLine, 2019, 52, 2219-2224.	0.5	3
61	Analysis of a local search heuristic for the generalized assignment problem with resource-independent task profits and identical resource capacity. Engineering Optimization, 2022, 54, 1426-1440.	1.5	3
62	3D Pallet Stacking with Rigorous Vertical Stability. Advances in Intelligent Systems and Computing, 2016, , 535-543.	0.5	3
63	Declarative UAVs Fleet Mission Planning: A Dynamic VRP Approach. Lecture Notes in Computer Science, 2020, , 188-202.	1.0	3
64	Order Quantity Distributions in Make-to-Order Manufacturing: At What Level of Aggregation Do They Respect Standard Assumptions?. International Federation for Information Processing, 2012, , 82-90.	0.4	2
65	An Approach for Designing Order Size Dependent Lead Time Models for Use in Inventory and Supply Chain Management. Smart Innovation, Systems and Technologies, 2016, , 15-25.	0.5	2
66	Energy-Efficient Straight Robotic Assembly Line Using Metaheuristic Algorithms. Advances in Intelligent Systems and Computing, 2018, , 803-814.	0.5	2
67	Optimisation of cost efficient robotic assembly line using metaheuristic algorithms. European Journal of Industrial Engineering, 2020, 14, 247.	0.5	2
68	An improved pre-processing method for cyber physical systems - as illustrated in the earth observation satellite scheduling. , 2021, , .		2
69	Big Data Analytics—A Brief Research Synthesis. Advances in Intelligent Systems and Computing, 2016, , 3-9.	0.5	2
70	A method for planning competency frameworks robust to disruptions - a case study of a manufacturing company. IFAC-PapersOnLine, 2021, 54, 1073-1080.	0.5	2
71	Determining the pricing strategy for different preference structures for the earth observation satellite scheduling problem through simulation and VIKOR. Flexible Services and Manufacturing Journal, 0, , 1.	1.9	2
72	Systemic Performance Analysis on Zoning for Unmanned Aerial Vehicle-Based Service Delivery. Drones, 2022, 6, 157.	2.7	2

#	Article	IF	CITATIONS
73	Towards an Analysis Methodology for Identifying Root Causes of Poor Delivery Performance. Foundations of Management, 2014, 6, 31-42.	0.2	1
74	Competence-driven employee substitutability planning robust to unexpected staff absenteeism. IFAC-PapersOnLine, 2019, 52, 61-66.	0.5	1
75	Simulation Study of the Volatility of Order Sizes and Their Impact on the Stability of a Simple Manufacturing Environment. International Federation for Information Processing, 2012, , 91-98.	0.4	1
76	A Design of Experiments Approach to Investigating the Sensitivity of the Re-order Point Method. IFIP Advances in Information and Communication Technology, 2013, , 646-653.	0.5	1
77	Multimodal Processes Rescheduling. IFIP Advances in Information and Communication Technology, 2013, , 534-541.	0.5	1
78	Material Supply Scheduling for a Mobile Robot with Supply Quantity Consideration—A GA-based Approach. Advances in Intelligent Systems and Computing, 2016, , 41-52.	0.5	1
79	Minimizing energy consumption in a straight robotic assembly line using differential evolution algorithm. Advances in Intelligent Systems and Computing, 2018, , 45-52.	0.5	1
80	The Actual Nature of Lead Times in Supply Chains Following a Strict Reorder Point Based Approach. Advances in Intelligent Systems and Computing, 2018, , 164-172.	0.5	1
81	Unpacking the Role of Artificial Intelligence for a Multimodal Service System Design. Electronics (Switzerland), 2022, 11, 549.	1.8	1
82	Comparison of exact and approximate approaches to UAVs mission contingency planning in dynamic environments. Mathematical Biosciences and Engineering, 2022, 19, 7091-7121.	1.0	1
83	Special issue on â€~Applied simulation, planning and scheduling techniques in industry'. Production Planning and Control, 2011, 22, 725-726.	5.8	0
84	A Hybrid Approach to Decision Support for Resource-Constrained Scheduling Problems. Smart Innovation, Systems and Technologies, 2016, , 101-113.	0.5	0
85	Practical Considerations about Error Analysis for Discrete Event Simulations Model. IFIP Advances in Information and Communication Technology, 2013, , 707-713.	0.5	0
86	Comparison of Criticality of Configuration Choices for Market Price and Product Cost. IFIP Advances in Information and Communication Technology, 2013, , 262-269.	0.5	0
87	Challenges of Measuring Revenue, Margin and Yield Optimization in Container Shipping. IFIP Advances in Information and Communication Technology, 2013, , 654-661.	0.5	0
88	An Experimental Investigation of Lead Time and the Effect of Order Crossover. Advances in Intelligent Systems and Computing, 2018, , 89-97.	0.5	0
89	A Large-Scale Customer-Facility Network Model for Customer Service Centre Location Applications. Advances in Intelligent Systems and Computing, 2020, , 68-77.	0.5	0
90	Evaluating the Standard Assumptions of Demand Planning and Control., 2007,, 221-228.		О

PETER NIELSEN

#	Article	IF	CITATIONS
91	Demand Planning & Demand Planning & Demand Planning Multiple Perspectives Through a Holistic Approach to Hierarchical Planning. , 2008, , 57-65.		O
92	Estimating Flexibility Requirements in a Demand-Driven Lean/JIT Environment. Lecture Notes in Computer Science, 2008, , 757-766.	1.0	0
93	A task scheduling algorithm for cloud computing with resource reservation. Engineering Optimization, 0 , 0 , 1 - 16 .	1.5	0
94	Periodic distributed delivery routes planning subject to operation uncertainty of vehicles travelling in a convoy. Journal of Information and Telecommunication, 0, , 1-21.	2.2	0
95	UAVs' Dynamic Routing, Subject to Time Windows Variation. IFAC-PapersOnLine, 2022, 55, 457-462.	0.5	0