Maziar Marandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4732938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. Journal of Luminescence, 2012, 132, 467-473.	1.5	93
2	Thermal control of the size and crystalline phase of CdS nanoparticles. Nanotechnology, 2006, 17, 3812-3816.	1.3	64
3	A photochemical method for controlling the size of CdS nanoparticles. Nanotechnology, 2005, 16, 334-338.	1.3	55
4	High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature. Nano Research, 2015, 8, 2317-2328.	5.8	38
5	Synthesis of CdS nanocrystals by a microwave activated method and investigation of the photoluminescence and electroluminescence properties. Applied Surface Science, 2011, 257, 9796-9801.	3.1	37
6	Highly sensitive selective sensing of nickel ions using repeatable fluorescence quenching-emerging of the CdTe quantum dots. Materials Research Bulletin, 2017, 95, 532-538.	2.7	35
7	Optimization of CuIn _{1–<i>X</i>} Ga _{<i>X</i>} S ₂ Nanoparticles and Their Application in the Hole-Transporting Layer of Highly Efficient and Stable Mixed-Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 30838-30845.	4.0	35
8	Synthesis of highly luminescent CdTe/CdS core-shell nanocrystals by optimization of the core and shell growth parameters. Optical Materials, 2017, 69, 358-366.	1.7	26
9	Fine tuning of the size of CdS nanoparticles synthesized by a photochemical method. Nanotechnology, 2006, 17, 1230-1235.	1.3	24
10	Optimization of the Photoanode of CdS Quantum Dot-Sensitized Solar Cells Using Light-Scattering TiO2 Hollow Spheres. Journal of Electronic Materials, 2017, 46, 6769-6783.	1.0	23
11	Thermochemical growth of Mn-doped CdS nanoparticles and study of luminescence evolution. Nanotechnology, 2008, 19, 225705.	1.3	21
12	Synthesis of TiO ₂ hollow spheres using titanium tetraisopropoxide: fabrication of high efficiency dye sensitized solar cells with photoanodes of different nanocrystalline TiO ₂ sub-layers. RSC Advances, 2014, 4, 58064-58076.	1.7	21
13	Facile synthesis of gradient alloyed ZnxCd1â~'xS nanocrystals using a microwave-assisted method. Journal of Alloys and Compounds, 2014, 586, 380-384.	2.8	21
14	Microwave activated synthesis of Ag2S and Ag2S@ZnS nanocrystals and their application in well-performing quantum dot sensitized solar cells. Solar Energy, 2020, 202, 155-163.	2.9	21
15	Fast two-step microwave-activated synthesis of Mn doped ZnS nanocrystals: Comparison of the luminescence and doping process with thermochemical approach. Journal of Luminescence, 2011, 131, 721-726.	1.5	20
16	Aqueous synthesis of CdTe-CdS core shell nanocrystals and effect of shell-formation process on the efficiency of quantum dot sensitized solar cells. Solar Energy, 2019, 188, 35-44.	2.9	20
17	Effect of hydrazine hydrate on the luminescence properties of MPA capped CdTe nanocrystals in hot injection method. Journal of Luminescence, 2014, 156, 235-239.	1.5	17
18	Synthesis of randomly directed inclined TiO 2 nanorods on the nanocrystalline TiO 2 layers and their optimized application in dye sensitized solar cells. Journal of Alloys and Compounds, 2017, 711, 603-610.	2.8	17

MAZIAR MARANDI

#	Article	IF	CITATIONS
19	Hydrothermal growth of a composite TiO2 hollow spheres/TiO2 nanorods powder and its application in high performance dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2019, 833, 143-150.	1.9	17
20	Self-assembled one-pot synthesis of red luminescent CdS:Mn/Mn(OH)2 nanoparticles. Journal of Luminescence, 2008, 128, 1980-1984.	1.5	16
21	Hydrothermal synthesis of TiO2 nanocrystals in different basic pHs and their applications in dye sensitized solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 70, 113-120.	1.3	13
22	Application of combinative TiO2nanorods and nanoparticles layer as the electron transport film in highly efficient mixed halides perovskite solar cells. Electrochimica Acta, 2019, 297, 1071-1078.	2.6	12
23	Fabrication of submicron/micron size cavities included TiO 2 photoelectrodes and optimization of light scattering to improve the photovoltaic performance of CdS quantum dot sensitized solar cells. Journal of Electroanalytical Chemistry, 2017, 799, 167-174.	1.9	11
24	Co-application of TiO2 nanoparticles and randomly directed TiO2 nanorods in the photoelectrode of the CdS:Mn quantum dots sensitized solar cells and optimization of the doping for the efficiency improvement. Optical Materials, 2019, 94, 224-230.	1.7	11
25	Aqueous synthesis of the CdTe NCs and influence of size on photovoltaic performance of the CdS/CdTe co-sensitized solar cells. Journal of Alloys and Compounds, 2019, 800, 140-149.	2.8	11
26	Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO ₂ nanocrystals. EPJ Applied Physics, 2015, 69, 20401.	0.3	10
27	Influence of cathode roughness on the performance of F8BT based organic–inorganic light emitting diodes. Organic Electronics, 2015, 16, 87-94.	1.4	10
28	Effects of PbS quantum dots layer and different light scattering films on the photovoltaic performance of double passivated PbS, CdS and CdSe quantum dots sensitized solar cells. Solar Energy, 2021, 221, 418-432.	2.9	10
29	The constructive role of ZnSe passivating layer on the photovoltaic performance of the fast-fabricated CdS/CdSe quantum dot sensitized solar cells. Optical Materials, 2020, 105, 109918.	1.7	9
30	A new co-solvent assisted CuSCN deposition approach for better coverage and improvement of the energy conversion efficiency of corresponding mixed halides perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 11576-11587.	1.1	8
31	Facile modified cyclic electrophoretic deposition of hydrothermally prepared TiO2 nanocrystals and their application in dye sensitized solar cells. Journal of Alloys and Compounds, 2015, 646, 264-270.	2.8	7
32	Application of TiO2 hollow spheres and ZnS/SiO2 double-passivaiting layers in the photoanode of the CdS/CdSe QDs sensitized solar cells for the efficiency enhancement. Solar Energy, 2021, 216, 48-60.	2.9	6
33	Facile fabrication of hyper-branched TiO2 hollow spheres for high efficiency dye-sensitized solar cells. Solar Energy, 2018, 174, 888-896.	2.9	5
34	Super-hydrophilic characteristic of thermochemically prepared CdS nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 58, 146-152.	1.3	4
35	Fabrication of dye-sensitized solar cells with multilayer photoanodes of hydrothermally grown TiO2 nanocrystals and P25 TiO2 nanoparticles. Bulletin of Materials Science, 2016, 39, 1403-1410.	0.8	4
36	Investigating the different conditions on solution processed MoOx thin film in long lifetime fluorescent polymer light emitting diodes. Materials Chemistry and Physics, 2018, 204, 262-268.	2.0	4

#	Article	IF	CITATIONS
37	Optimization of the doping process and light scattering in CdS:Mn quantum dots sensitized solar cells for the efficiency enhancement. Journal of Materials Science: Materials in Electronics, 2019, 30, 3820-3832.	1.1	3
38	Highly Formed Luminescent Oxygen Trap States in Thermochemically Prepared CdS Nanocrystals and Improvement of the Luminescence Property. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 327-333.	0.6	2
39	Fabrication of dye sensitized solar cells with improved multi-layer photonodes of hydrothermally grown TiO2 nanocrystals in different autoclaving pHs. Journal of Materials Science: Materials in Electronics, 2017, 28, 9548-9558.	1.1	2
40	Fabrication of quantum dot-sensitized solar cells with multilayer TiO2/PbS(X)/CdS/CdSe/ZnS/SiO2 photoanode and optimization of the PbS nanocrystalline layer. Journal of Materials Science: Materials in Electronics, 2021, 32, 10123-10139.	1.1	1
41	Co-sensitization of quantum dot sensitized solar cells composed of TiO2 nanocrystalline photoanode with CdS and PbS nanoparticles and effect of PbS on the performance of solar cell. Iranian Journal of Physics Research, 2017, 17, 499-507.	0.0	1
42	A fast combinative chemical precipitation/microwave-activated approach for the synthesis of alloyed CdSexTe1-x nanocrystals for application in quantum dot-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2022, 33, 16713-16727.	1.1	1
43	Cd+2-sensing property of highly luminescent CdTe nanocrystals in the presence of Na2S2O3. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	0