Wasif Farooq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4732846/publications.pdf

Version: 2024-02-01

38	2,190	22	37
papers	citations	h-index	g-index
38	38	38	2384
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 2014, 155, 330-333.	4.8	294
2	Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews, 2018, 82, 3107-3126.	8.2	203
3	Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresource Technology, 2013, 132, 230-238.	4.8	186
4	Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 2015, 184, 73-81.	4.8	153
5	Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel, 2018, 233, 529-538.	3.4	148
6	Potential of biomass for bioenergy in Pakistan based on present case and future perspectives. Renewable and Sustainable Energy Reviews, 2018, 81, 1247-1258.	8.2	122
7	Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chemistry, 2013, 15, 749.	4.6	82
8	Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Research, 2015, 8, 1-7.	2.4	82
9	A comparative study of machine learning methods for bio-oil yield prediction – A genetic algorithm-based features selection. Bioresource Technology, 2021, 335, 125292.	4.8	82
10	Harvesting of oleaginous Chlorella sp. by organoclays. Bioresource Technology, 2013, 132, 440-445.	4.8	74
11	Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process. Energy, 2021, 226, 120433.	4.5	67
12	Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresource Technology, 2013, 137, 74-81.	4.8	66
13	Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Chemosphere, 2022, 306, 135565.	4.2	62
14	Aminoclay-conjugated TiO2 synthesis for simultaneous harvesting and wet-disruption of oleaginous Chlorella sp Chemical Engineering Journal, 2014, 245, 143-149.	6.6	54
15	Development of direct conversion method for microalgal biodiesel production using wet biomass of Nannochloropsis salina. Bioresource Technology, 2015, 191, 438-444.	4.8	53
16	Oil extraction by aminoparticle-based H2O2 activation via wet microalgae harvesting. RSC Advances, 2013, 3, 12802.	1.7	51
17	Preparation and Evaluation of Fe-Al Binary Oxide for Arsenic Removal: Comparative Study with Single Metal Oxides. Separation Science and Technology, 2010, 45, 1975-1981.	1.3	46
18	Algalâ€"bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions. Bioresource Technology, 2014, 162, 70-79.	4.8	42

#	Article	IF	CITATIONS
19	Utilization of lipid extracted algal biomass and sugar factory wastewater for algal growth and lipid enhancement of Ettlia sp Bioresource Technology, 2014, 163, 180-185.	4.8	32
20	Ru-embedded 3D g-C3N4 hollow nanosheets (3D CNHNS) with proficient charge transfer for stimulating photocatalytic H2 production. International Journal of Hydrogen Energy, 2021, 46, 27997-28010.	3.8	28
21	Synthesis and characterization of zinc-coated urea fertilizer. Journal of Plant Nutrition, 2018, 41, 1625-1635.	0.9	26
22	Chlorella vulgaris cultivation with an additive of magnesium-aminoclay. Algal Research, 2016, 17, 211-216.	2.4	24
23	Characterization of newly isolated oleaginous microalga Monoraphidium sp. for lipid production under different conditions. Algal Research, 2015, 12, 289-294.	2.4	21
24	Direct transesterification of wet microalgal biomass for preparation of biodiesel. Algal Research, 2015, 12, 405-411.	2.4	21
25	Effect of ultra-violet cross-linking on the properties of boric acid and glycerol co-plasticized thermoplastic starch films. Food Packaging and Shelf Life, 2019, 19, 184-192.	3.3	21
26	Monitoring lipids profile, CO2 fixation, and water recyclability for the economic viability of microalgae Chlorella vulgaris cultivation at different initial nitrogen. Journal of Biotechnology, 2022, 345, 30-39.	1.9	20
27	An integrated framework of data-driven, metaheuristic, and mechanistic modeling approach for biomass pyrolysis. Chemical Engineering Research and Design, 2022, 162, 337-345.	2.7	20
28	In situ Transesterification of Microalgae Parachlorella kessleri Biomass Using Sulfonated Rice Husk Solid Catalyst at Room Temperature. Bioenergy Research, 2020, 13, 530-541.	2.2	18
29	Removal of Bromate (BrO ^{â^'} ₃) from Water using Cationic Surfactant-Modified Powdered Activated Carbon (SM-PAC). Separation Science and Technology, 2012, 47, 1906-1912.	1.3	16
30	Energy efficient process for microalgae cell disruption for oil recovery using triiodide resin. Algal Research, 2016, 13, 102-108.	2.4	15
31	Sustainable production of microalgae biomass for biofuel and chemicals through recycling of water and nutrient within the biorefinery context: A review. GCB Bioenergy, 2021, 13, 914-940.	2.5	15
32	Evolved Gas Analysis and Kinetics of Catalytic and Non-Catalytic Pyrolysis of Microalgae Chlorella sp. Biomass With Ni/Î,-Al2O3 Catalyst via Thermogravimetric Analysis. Frontiers in Energy Research, 0, 9, .	1.2	12
33	Valorization of Wet Oily Petrochemical Sludge via Slow Pyrolysis: Thermo-Kinetics Assessment and Artificial Neural Network Modeling. Frontiers in Energy Research, 2022, 9, .	1.2	10
34	Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4) Hybrid Composites for Harvesting of Mixed Microalgae. Energies, 2018, 11, 1359.	1.6	8
35	Influence of Plasticizers on Mechanical and Thermal Properties of Methyl Cellulose-Based Edible Films. Journal of Polymers and the Environment, 2018, 26, 291-300.	2.4	7
36	Cobalt Boride/g-C3N4 Nanosheets-Assisted Electrocatalytic Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid. Catalysts, 2021, 11, 1241.	1.6	4

#	Article	IF	CITATIONS
37	Isolation of indigenous microalgae: nitrogen/phosphorous removal and biofuel production. Biofuels, 2020, 11, 269-276.	1.4	3
38	Maximizing Energy Content and CO2 Bio-fixation Efficiency of an Indigenous Isolated Microalga Parachlorella kessleri HY-6 Through Nutrient Optimization and Water Recycling During Cultivation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 804608.	2.0	2