Qingwen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/473263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Cleavage of Lignin–Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwaveâ€Assisted Treatment with Deep Eutectic Solvent. ChemSusChem, 2017, 10, 1692-1700.	6.8	354
2	Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials, 2015, 8, 2718-2734.	2.9	224
3	A Dynamic Gel with Reversible and Tunable Topological Networks and Performances. Matter, 2020, 2, 390-403.	10.0	216
4	Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. ACS Applied Materials & amp; Interfaces, 2017, 9, 13213-13222.	8.0	214
5	High Performance, Flexible, Solid‣tate Supercapacitors Based on a Renewable and Biodegradable Mesoporous Cellulose Membrane. Advanced Energy Materials, 2017, 7, 1700739.	19.5	202
6	Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose, 2012, 19, 1173-1187.	4.9	192
7	Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chemistry, 2016, 18, 1010-1018.	9.0	183
8	Efficient Flame-Retardant and Smoke-Suppression Properties of Mg–Al-Layered Double-Hydroxide Nanostructures on Wood Substrate. ACS Applied Materials & Interfaces, 2017, 9, 23039-23047.	8.0	166
9	Efficient Cleavage of Strong Hydrogen Bonds in Cotton by Deep Eutectic Solvents and Facile Fabrication of Cellulose Nanocrystals in High Yields. ACS Sustainable Chemistry and Engineering, 2017, 5, 7623-7631.	6.7	161
10	Renewable Castorâ€Oilâ€based Waterborne Polyurethane Networks: Simultaneously Showing High Strength, Selfâ€Healing, Processability and Tunable Multishape Memory. Angewandte Chemie - International Edition, 2021, 60, 4289-4299.	13.8	161
11	Chemical mechanism of fire retardance of boric acid on wood. Wood Science and Technology, 2004, 38, 375.	3.2	128
12	Effects of chemical modification on the mechanical properties of wood. European Journal of Wood and Wood Products, 2013, 71, 401-416.	2.9	126
13	Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 150-157.	7.6	123
14	Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chinese Journal of Catalysis, 2013, 34, 641-650.	14.0	112
15	Production of Nanocellulose Using Hydrated Deep Eutectic Solvent Combined with Ultrasonic Treatment. ACS Omega, 2019, 4, 8539-8547.	3.5	112
16	Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. Journal of Materials Chemistry A, 2020, 8, 6219-6228.	10.3	101
17	Morphology, mechanical properties, and dimensional stability of wood particle/high density polyethylene composites: Effect of removal of wood cell wall composition. Materials & Design, 2014, 58, 339-345.	5.1	97
18	Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2019, 11, 5919-5927.	8.0	91

#	Article	IF	CITATIONS
19	Flame retardant eugenol-based thiol-ene polymer networks with high mechanical strength and transparency. Chemical Engineering Journal, 2019, 368, 359-368.	12.7	90
20	Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization. Carbohydrate Polymers, 2017, 169, 272-281.	10.2	89
21	Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts. Waste Management, 2018, 79, 38-47.	7.4	85
22	Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Composites Science and Technology, 2014, 93, 68-75.	7.8	84
23	Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylene composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1272-1278.	7.6	83
24	From plant phenols to novel bio-based polymers. Progress in Polymer Science, 2022, 125, 101473.	24.7	78
25	Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/HDPE composites. Composites Part B: Engineering, 2020, 185, 107778.	12.0	74
26	Catalytic upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts. Green Chemistry, 2011, 13, 940.	9.0	72
27	Synthesis of Biobased Flame-Retardant Carboxylic Acid Curing Agent and Application in Wood Surface Coating. ACS Sustainable Chemistry and Engineering, 2019, 7, 14727-14738.	6.7	67
28	Fully recyclable, flame-retardant and high-performance carbon fiber composites based on vanillin-terminated cyclophosphazene polyimine thermosets. Composites Part B: Engineering, 2021, 224, 109188.	12.0	63
29	Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors. Journal of Power Sources, 2020, 449, 227532.	7.8	62
30	Homogeneous Dispersion of Cellulose Nanofibers in Waterborne Acrylic Coatings with Improved Properties and Unreduced Transparency. ACS Sustainable Chemistry and Engineering, 2016, 4, 3766-3772.	6.7	61
31	Preparation and flame retardancy of castor oil based UV-cured flame retardant coating containing P/Si/S on wood surface. Industrial Crops and Products, 2019, 130, 562-570.	5.2	55
32	Rapid self-healing, multiple recyclability and mechanically robust plant oil-based epoxy resins enabled by incorporating tri-dynamic covalent bonding. Journal of Materials Chemistry A, 2021, 9, 18431-18439.	10.3	54
33	Preparation and Characterization of Modified Porous Wood Flour/Lauric-Myristic Acid Eutectic Mixture as a Form-Stable Phase Change Material. Energy & Fuels, 2018, 32, 5453-5461.	5.1	53
34	Lightweight, Flexible, Thermally-Stable, and Thermally-Insulating Aerogels Derived from Cotton Nanofibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2019, 7, 9202-9210.	6.7	52
35	Mechanical and physical properties of core–shell structured wood plastic composites: Effect of shells with hybrid mineral and wood fillers. Composites Part B: Engineering, 2013, 45, 1040-1048.	12.0	49
36	Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal of Polymers and the Environment, 2018, 26, 48-58.	5.0	49

#	Article	IF	CITATIONS
37	Esterification of wood with citric acid: The catalytic effects of sodium hypophosphite (SHP). Holzforschung, 2014, 68, 427-433.	1.9	47
38	Sustainable Carbon Aerogels Derived from Nanofibrillated Cellulose as Highâ€Performance Absorption Materials. Advanced Materials Interfaces, 2016, 3, 1600004.	3.7	47
39	Synthesis of lignin-based polyols via thiol-ene chemistry for high-performance polyurethane anticorrosive coating. Composites Part B: Engineering, 2020, 200, 108295.	12.0	47
40	Thermal and burning properties of wood flour-poly(vinyl chloride) composite. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1577-1585.	3.6	46
41	High-performance epoxy vitrimer with superior self-healing, shape-memory, flame retardancy, and antibacterial properties based on multifunctional curing agent. Composites Part B: Engineering, 2022, 242, 110109.	12.0	46
42	Fire retardancy of an aqueous, intumescent, and translucent wood varnish based on guanylurea phosphate and melamine-urea-formaldehyde resin. Progress in Organic Coatings, 2018, 121, 64-72.	3.9	44
43	Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement. Polymer, 2019, 173, 103-109.	3.8	42
44	Robust Nanofibrillated Cellulose Hydro/Aerogels from Benign Solution/Solvent Exchange Treatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 6624-6634.	6.7	41
45	Strengthening Carbon Deposition of Polyolefin Using Combined Catalyst as a General Method for Improving Fire Retardancy. Macromolecular Rapid Communications, 2008, 29, 789-793.	3.9	40
46	Fire performance of oak wood modified with N-methylol resin and methylolated guanylurea phosphate/boric acid-based fire retardant. Construction and Building Materials, 2014, 72, 1-6.	7.2	39
47	Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions. Bioresource Technology, 2020, 312, 123586.	9.6	39
48	Mechanical properties, creep resistance, and dimensional stability of core/shell structured wood flour/polyethylene composites with highly filled core layer. Construction and Building Materials, 2019, 226, 879-887.	7.2	38
49	A cysteine derivative-enabled ultrafast thiol–ene reaction for scalable synthesis of a fully bio-based internal emulsifier for high-toughness waterborne polyurethanes. Green Chemistry, 2020, 22, 5722-5729.	9.0	38
50	Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide. Materials and Design, 2020, 191, 108589.	7.0	38
51	Water-Induced Self-Assembly and <i>In Situ</i> Mineralization within Plant Phenolic Glycol-Gel toward Ultrastrong and Multifunctional Thermal Insulating Aerogels. ACS Nano, 2022, 16, 9062-9076.	14.6	38
52	Multifunctional Bionanocomposite Foams with a Chitosan Matrix Reinforced by Nanofibrillated Cellulose. ChemNanoMat, 2017, 3, 98-108.	2.8	37
53	Morphology, Mechanical Properties and Dimensional Stability of Biomass Particles/High Density Polyethylene Composites: Effect of Species and Composition. Polymers, 2018, 10, 308.	4.5	37
54	Design of Intrinsically Flame-Retardant Vanillin-Based Epoxy Resin for Thermal-Conductive Epoxy/Graphene Aerogel Composites. ACS Applied Materials & Interfaces, 2021, 13, 59341-59351.	8.0	35

#	Article	IF	CITATIONS
55	Solid biopolymer electrolytes based on all-cellulose composites prepared by partially dissolving cellulosic fibers in the ionic liquid 1-butyl-3-methylimidazolium chloride. Journal of Materials Science, 2012, 47, 5978-5986.	3.7	34
56	High-performance flame retarded paraffin/epoxy resin form-stable phase change material. Journal of Materials Science, 2019, 54, 875-885.	3.7	34
57	Effects of pigments on the UV degradation of woodâ€flour/HDPE composites. Journal of Applied Polymer Science, 2010, 118, 1068-1076.	2.6	33
58	Comparative study of the structure, mechanical and thermomechanical properties of cellulose nanopapers with different thickness. Cellulose, 2016, 23, 1375-1382.	4.9	33
59	Sandwich-structured wood flour/HDPE composite panels: Reinforcement using a linear low-density polyethylene core layer. Construction and Building Materials, 2018, 164, 489-496.	7.2	33
60	A facile strategy to construct vegetable oil-based, fire-retardant, transparent and mussel adhesive intumescent coating for wood substrates. Industrial Crops and Products, 2020, 154, 112628.	5.2	32
61	Thermoplastic deformation of poplar wood plasticized by ionic liquids measured by a nonisothermal compression technique. Holzforschung, 2014, 68, 555-566.	1.9	28
62	Thermal decomposition of fire-retarded wood flour/polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2016, 123, 309-318.	3.6	28
63	Heat transfer and mechanical properties of wood-plastic composites filled with flake graphite. Thermochimica Acta, 2018, 664, 26-31.	2.7	28
64	High-strength, lightweight, co-extruded wood flour-polyvinyl chloride/lumber composites: Effects of wood content in shell layer on mechanical properties, creep resistance, and dimensional stability. Journal of Cleaner Production, 2020, 244, 118860.	9.3	28
65	The reinforcement efficacy of nano- and microscale silica for extruded wood flour/HDPE composites: the effects of dispersion patterns and interfacial modification. Journal of Materials Science, 2018, 53, 1899-1910.	3.7	27
66	Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin. Cellulose, 2019, 26, 4005-4019.	4.9	27
67	Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer. Materials and Design, 2021, 212, 110182.	7.0	27
68	Toughness and crystallization enhancement in wood fiber-reinforced polypropylene composite through controlling matrix nucleation. Journal of Materials Science, 2018, 53, 6542-6551.	3.7	26
69	Conductive and fire-retardant wood/polyethylene composites based on a continuous honeycomb-like nanoscale carbon black network. Construction and Building Materials, 2020, 233, 117369.	7.2	26
70	Modification of poplar wood with glucose crosslinked with citric acid and 1,3-dimethylol-4,5-dihydroxy ethyleneurea. Holzforschung, 2016, 70, 47-53.	1.9	25
71	Castor oil based UV-cured coatings using thiol-ene click reaction for thermal degradation with flame retardance. Industrial Crops and Products, 2019, 141, 111798.	5.2	25
72	One-Step Activation and Surface Fatty Acylation of Cellulose Fibers in a Solvent-Free Condition. ACS Sustainable Chemistry and Engineering, 2019, 7, 15920-15927.	6.7	24

#	Article	IF	CITATIONS
73	Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin. Progress in Organic Coatings, 2022, 162, 106597.	3.9	24
74	Thermo-oxidative decomposition and combustion behavior of Scots pine (Pinus sylvestris L.) sapwood modified with phenol- and melamine-formaldehyde resins. Wood Science and Technology, 2016, 50, 1125-1143.	3.2	23
75	Reinforcement of continuous fibers for extruded wood-flour/HDPE composites: Effects of fiber type and amount. Construction and Building Materials, 2019, 228, 116718.	7.2	23
76	Interfacial crystals morphology modification in cellulose fiber/polypropylene composite by mechanochemical method. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105765.	7.6	23
77	The influence of double-layered distribution of fire retardants on the fire retardancy and mechanical properties of wood fiber polypropylene composites. Construction and Building Materials, 2020, 242, 118047.	7.2	23
78	Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration. Chemical Engineering Journal, 2021, 426, 130722.	12.7	23
79	Thermal Properties of Carboxymethylcellulose and Methyl Methacrylate Graft Copolymers. Journal of Macromolecular Science - Physics, 2013, 52, 1242-1249.	1.0	22
80	Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties. Materials Chemistry Frontiers, 2020, 4, 3319-3327.	5.9	22
81	Woodâ€Derived Systems for Sustainable Oil/Water Separation. Advanced Sustainable Systems, 2021, 5, 2100039.	5.3	22
82	Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants. RSC Advances, 2016, 6, 13890-13897.	3.6	21
83	The Effect of Carbon Nanotubes on the Mechanical Properties of Wood Plastic Composites by Selective Laser Sintering. Polymers, 2017, 9, 728.	4.5	21
84	The properties of flax fiber reinforced wood flour/high density polyethylene composites. Journal of Forestry Research, 2018, 29, 533-540.	3.6	21
85	Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production. Carbohydrate Polymers, 2016, 149, 20-27.	10.2	20
86	Uniform and porous nacre-like cellulose nanofibrils/nanoclay composite membrane as separator for highly safe and advanced Li-ion battery. Journal of Membrane Science, 2021, 637, 119622.	8.2	20
87	Flexible decorative wood veneer with high strength, wearability and moisture penetrability enabled by infiltrating castor oil-based waterborne polyurethanes. Composites Part B: Engineering, 2022, 230, 109502.	12.0	20
88	Efficient and sustainable photocatalytic degradation of dye in wastewater with porous and recyclable wood foam@V2O5 photocatalysts. Journal of Cleaner Production, 2022, 332, 130054.	9.3	20
89	Fully Biobased Soy Protein Adhesives with Integrated High-Strength, Waterproof, Mildew-Resistant, and Flame-Retardant Properties. ACS Sustainable Chemistry and Engineering, 2022, 10, 6675-6686.	6.7	20
90	Combustion behavior of oak wood (<i>Quercus mongolica</i> L.) modified by 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU). Holzforschung, 2014, 68, 881-887.	1.9	19

#	Article	IF	CITATIONS
91	Synergistic toughening effects of grafting modification and elastomer-olefin block copolymer addition on the fracture resistance of wood particle/polypropylene/elastomer composites. Materials and Design, 2019, 181, 107918.	7.0	19
92	Comparative study of high-density polyethylene-based biocomposites reinforced with various agricultural residue fibers. Industrial Crops and Products, 2021, 172, 114053.	5.2	19
93	Recycling end-of-life WPC products into ultra-high-filled, high-performance wood fiber/polyethylene composites: a sustainable strategy for clean and cyclic processing in the WPC industry. Journal of Materials Research and Technology, 2022, 18, 1-14.	5.8	19
94	Investigation on the compatibilizing effect of m-isopropenyl-α,α-dimethylbenzyl isocyanate grafted polypropylene on polypropylene and wood flour composites. Wood Science and Technology, 2012, 46, 257-270.	3.2	18
95	Catalytic Upgrading of Bio-Oil by Reacting with Olefins and Alcohols over Solid Acids: Reaction Paths via Model Compound Studies. Energies, 2013, 6, 1568-1589.	3.1	18
96	Effects of use of coupling agents on the properties of microfibrillar composite based on high-density polyethylene and polyamide-6. Polymer Bulletin, 2014, 71, 685-703.	3.3	18
97	Expandable graphite's versatility and synergy with carbon black and ammonium polyphosphate in improving antistatic and fireâ€retardant properties of wood flour/polypropylene composites. Polymer Composites, 2017, 38, 767-773.	4.6	18
98	Bamboo particle reinforced polypropylene composites made from different fractions of bamboo culm: Fiber characterization and analysis of composite properties. Polymer Composites, 2019, 40, 4619-4628.	4.6	18
99	Recyclable and Fluorescent Epoxy Polymer Networks from Cardanol Via Solvent-Free Epoxy-Thiol Chemistry. ACS Applied Polymer Materials, 2021, 3, 3082-3092.	4.4	18
100	Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid. Energies, 2013, 6, 4531-4550.	3.1	17
101	Application of Mechanical Models to Flax Fiber /Wood Fiber/ Plastic Composites. BioResources, 2013, 8,	1.0	17
102	Rheological behavior and mechanical properties of wood flour/high density polyethylene blends: Effects of esterification of wood with citric acid. Polymer Composites, 2016, 37, 553-560.	4.6	17
103	Combustion behavior of Scots pine (<i>Pinus sylvestris</i> L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica. Holzforschung, 2016, 70, 1165-1173.	1.9	16
104	Extraordinary solution-processability of lignin in phenol–maleic anhydride and dielectric films with controllable properties. Journal of Materials Chemistry A, 2019, 7, 23162-23172.	10.3	16
105	Mechanical reinforcement and creep resistance of coextruded wood flour/polyethylene composites by shellâ€layer treatment with nano―and microâ€SiO ₂ particles. Polymer Composites, 2019, 40, 1576-1584.	4.6	16
106	Effects of Matrix Modification on the Mechanical Properties of Wood–Polypropylene Composites. Polymers, 2017, 9, 712.	4.5	15
107	Combination of Magnetic Lignocellulosic Particles, High-Density Polyethylene, and Carbon Black for the Construction of Composites with Tunable Functionalities. Polymers, 2018, 10, 9.	4.5	15
108	Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation. Journal of Materials Science, 2021, 56, 5624-5636.	3.7	15

#	Article	IF	CITATIONS
109	Effects of ultraviolet absorbers on the ultraviolet degradation of riceâ€hull/highâ€density polyethylene composites. Journal of Applied Polymer Science, 2012, 126, 906-915.	2.6	14
110	Thermal, crystallization, and dynamic rheological behavior of wood particle/HDPE composites: Effect of removal of wood cell wall composition. Journal of Applied Polymer Science, 2014, 131, .	2.6	14
111	High-performance lignocellulose/polycarbonate biocomposites fabricated by in situ reaction: Structure and properties. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106068.	7.6	14
112	Interactions between biomass-derived components and polypropylene during wood–plastic composite pyrolysis. Biomass Conversion and Biorefinery, 2022, 12, 3345-3357.	4.6	14
113	Efficient flame-retardant hybrid coatings on wood plastic composites by layer-by-layer assembly. Journal of Cleaner Production, 2021, 321, 128949.	9.3	14
114	Mechanical properties, morphology, and creep resistance of ultra-highly filled bamboo fiber/polypropylene composites: Effects of filler content and melt flow index of polypropylene. Construction and Building Materials, 2021, 310, 125289.	7.2	14
115	Fire-retardant and smoke-suppressant performance of an intumescent waterborne amino-resin fire-retardant coating for wood. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2008, 3, 487-492.	0.2	13
116	Effects of LiCl on crystallization, thermal, and mechanical properties of polyamide 6/wood fiber composites. Polymer Composites, 2018, 39, E1574.	4.6	12
117	Experimental and numerical analysis of the sound insulation property of wood plastic composites (WPCs) filled with precipitated CaCO3. Holzforschung, 2013, 67, 301-306.	1.9	11
118	Material pocket dynamic mechanical analysis: a novel tool to study thermal transition in wood fibers plasticized by an ionic liquid (IL). Holzforschung, 2015, 69, 223-232.	1.9	11
119	Thermal degradation and flammability behavior of fire-retarded wood flour/polypropylene composites. Journal of Fire Sciences, 2016, 34, 226-239.	2.0	11
120	Synthesis and characterization of the n-butyl palmitate as an organic phase change material. Journal of Thermal Analysis and Calorimetry, 2019, 136, 2033-2039.	3.6	11
121	Flammability, thermal stability, and mechanical properties of wood flour/polycarbonate/polyethylene bio-based composites. Industrial Crops and Products, 2021, 169, 113638.	5.2	11
122	The influence of zinc compounds on thermal stability and flame retardancy of wood flour polyvinyl chloride composites. Construction and Building Materials, 2022, 320, 126203.	7.2	11
123	Preparation and Properties of a Novel Microcrystalline Cellulose-Filled Composites Based on Polyamide 6/High-Density Polyethylene. Materials, 2017, 10, 808.	2.9	10
124	Effects of lithium chloride and chain extender on the properties of wood fiber reinforced polyamide 6 composites. Polymer Testing, 2018, 72, 132-139.	4.8	10
125	Woodâ€Đerived Nanofibrillated Cellulose Hydrogel Filters for Fast and Efficient Separation of Nanoparticles. Advanced Sustainable Systems, 2019, 3, 1900063.	5.3	10
126	Improvement in compatibility and mechanical properties of modified wood fiber/polypropylene composites. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2008, 3, 243-247.	0.2	9

#	Article	IF	CITATIONS
127	Effects of chemical modification of wood flour on the rheological properties of highâ€density polyethylene blends. Journal of Applied Polymer Science, 2014, 131, .	2.6	9
128	Preparation of Desirable Porous Cell Structure Polylactide/Wood Flour Composite Foams Assisted by Chain Extender. Materials, 2017, 10, 999.	2.9	9
129	Enhancing the flame retardancy and mechanical properties of veneered wood flour/polyvinyl chloride composites. Polymer Composites, 2020, 41, 848-857.	4.6	9
130	Rheological behavior, internal stress and structural changes of ultra-high-filled wood-flour/high-density polyethylene composite in shear flow field. Journal of Materials Research and Technology, 2021, 14, 1191-1202.	5.8	9
131	Isothermal crystallization kinetics of Kevlar fiberâ€reinforced wood flour/highâ€density polyethylene composites. Journal of Applied Polymer Science, 2012, 126, E2.	2.6	8
132	Effect of the Addition of Carbon Nanomaterials on Electrical and Mechanical Properties of Wood Plastic Composites. Polymers, 2017, 9, 620.	4.5	7
133	Compression rheological behavior of ultrahighly filled wood flour-polyethylene composites. Composites Part B: Engineering, 2021, 215, 108766.	12.0	7
134	Fire-retardant mechanism of fire-retardant FRW by FTIR. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2006, 1, 438-444.	0.2	6
135	Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent. Journal of Forestry Research, 2016, 27, 949-958.	3.6	6
136	Thermal and mechanical properties of woodâ€plastic composites filled with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2018, 135, 46308.	2.6	6
137	Impact of lithium chloride on the performance of wood fiber reinforced polyamide 6/highâ€density polyethylene blend composites. Polymer Composites, 2019, 40, 4608-4618.	4.6	6
138	Statistical distribution of mechanical properties and energy absorption of laminated cotton fabric reinforced epoxy composites. Polymer Composites, 2020, 41, 2829-2840.	4.6	6
139	Preparation of highly filled wood flour/recycled high density polyethylene composites by <i>in situ</i> reactive extrusion. Journal of Applied Polymer Science, 2012, 124, 5247-5253.	2.6	5
140	Incorporation effect of enzymatic hydrolysis lignin on the mechanical and rheological properties of the resulting wood flour/highâ€density polyethylene composites. Polymer Composites, 2016, 37, 379-384.	4.6	5
141	Characterization of the structural rheological properties of wood flour–polyethylene composites with ultrahigh filling on the basis of uniaxial cyclic compression method. Composites Part A: Applied Science and Manufacturing, 2022, 153, 106724.	7.6	5
142	The influence of wood flour and compatibilizer (m-TMI-g-PP) on crystallization and melting behavior of polypropylene. Journal of Thermal Analysis and Calorimetry, 2012, 107, 717-723.	3.6	4
143	Preparation and characterization of woodâ€fiberâ€reinforced polyamide 6–polypropylene blend composites. Journal of Applied Polymer Science, 2019, 136, 47413.	2.6	4
144	Effect of an antioxidant on the life cycle of wood flour/polypropylene composites. Journal of Forestry Research, 2020, 31, 1435-1443.	3.6	4

#	Article	IF	CITATIONS
145	Synthesis of a vanillinâ€based curing agent and its application in wood to improve dimensional stability and flame retardancy. Polymers for Advanced Technologies, 2022, 33, 3249-3262.	3.2	4
146	Mechanical Properties and Fire Retardancy of Wood Flour/High-Density Polyethylene Composites Reinforced with Continuous Honeycomb-Like Nano-SiO2 Network and Fire Retardant. Journal of Renewable Materials, 2020, 8, 485-498.	2.2	3
147	Rheological Properties of Wood–Plastic Composites by 3D Numerical Simulations: Different Components. Forests, 2021, 12, 417.	2.1	3
148	Influence of Compatibiliser and Wood Flour on the Non-Isothermal Crystallisation Behaviour of Polypropylene Composites. Polymers and Polymer Composites, 2010, 18, 37-44.	1.9	2
149	Reinforcement of wood flour/HDPE composite with a copolyester of <i>p</i> â€hydroxy benzoic acid and 2â€hydroxyâ€6â€naphthoic acid. Journal of Applied Polymer Science, 2019, 136, 47338.	2.6	2
150	Impact of lithium chloride and <i>inâ€situ</i> grafting on the performance of microcrystalline celluloseâ€filled composites based on polyamide 6/highâ€density polyethylene. Polymer Composites, 2019, 40, E865.	4.6	2
151	Comparative study on the effects of silica size and dispersion mode on the fire retardancy of extruded wood fiber/ HDPE composites. Polymer Composites, 2020, 41, 4920-4932.	4.6	2
152	Dimensional stability improvements of waste wood flour/HDPE composites via carbon black network embedding. Construction and Building Materials, 2021, 299, 123955.	7.2	2
153	Absorption Materials: Sustainable Carbon Aerogels Derived from Nanofibrillated Cellulose as High-Performance Absorption Materials (Adv. Mater. Interfaces 10/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	1
154	Renewable Castorâ€Oilâ€based Waterborne Polyurethane Networks: Simultaneously Showing High Strength, Selfâ€Healing, Processability and Tunable Multishape Memory. Angewandte Chemie, 2021, 133, 4335-4345.	2.0	0
155	Nonlinear tensile behavior of cotton fabric reinforced polypropylene composites. Journal of Applied Polymer Science, 2021, 138, 49780.	2.6	0