
Richard A James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4732457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 2006, 57, 1025-1043.	2.4	1,484
2	Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 2012, 30, 360-364.	9.4	690
3	Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 2003, 253, 201-218.	1.8	609
4	Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 2011, 62, 2939-2947.	2.4	394
5	HKT1;5-Like Cation Transporters Linked to Na+ Exclusion Loci in Wheat, Nax2 and Kna1. Plant Physiology, 2007, 143, 1918-1928.	2.3	378
6	New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany, 2010, 61, 3499-3507.	2.4	359
7	Physiological Characterization of Two Genes for Na+ Exclusion in Durum Wheat, Nax1 and Nax2. Plant Physiology, 2006, 142, 1537-1547.	2.3	350
8	Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 2010, 37, 255.	1.1	288
9	A Sodium Transporter (HKT7) Is a Candidate for Nax1, a Gene for Salt Tolerance in Durum Wheat. Plant Physiology, 2006, 142, 1718-1727.	2.3	266
10	Control of Sodium Transport in Durum Wheat. Plant Physiology, 2005, 137, 807-818.	2.3	264
11	Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 2002, 29, 1393.	1.1	259
12	Title is missing!. Plant and Soil, 2002, 247, 93-105.	1.8	252
13	Genetic variation for improving the salt tolerance of durum wheat. Australian Journal of Agricultural Research, 2000, 51, 69.	1.5	218
14	High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR. Frontiers in Plant Science, 2018, 9, 237.	1.7	206
15	Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. Journal of Experimental Botany, 2002, 53, 1503-1514.	2.4	191
16	Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+and Cl-in salt-affected barley and durum wheat. Plant, Cell and Environment, 2006, 29, 2185-2197.	2.8	180
17	A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Functional Plant Biology, 2009, 36, 970.	1.1	173
18	Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. Journal of Experimental Botany, 2002, 53, 1503-14.	2.4	165

RICHARD A JAMES

#	Article	IF	CITATIONS
19	Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Functional Plant Biology, 2016, 43, 1103.	1.1	162
20	Genetic variation in tolerance to the osmotic stress componentof salinity stress in durum wheat. Functional Plant Biology, 2008, 35, 111.	1.1	126
21	Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography. Frontiers in Plant Science, 2016, 7, 1808.	1.7	118
22	Genetic control of sodium exclusion in durum wheat. Australian Journal of Agricultural Research, 2003, 54, 627.	1.5	115
23	Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Functional Plant Biology, 2008, 35, 1172.	1.1	100
24	Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (<i>Triticum aestivum</i>) grown on acid soil. New Phytologist, 2012, 195, 609-619.	3.5	95
25	Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake. Functional Plant Biology, 2002, 29, 1065.	1.1	93
26	Cellâ€specific localization of Na ⁺ in roots of durum wheat and possible control points for salt exclusion. Plant, Cell and Environment, 2008, 31, 1565-1574.	2.8	90
27	Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Functional Plant Biology, 2012, 39, 609.	1.1	86
28	High-throughput phenotyping technologies allow accurate selection of stay-green. Journal of Experimental Botany, 2016, 67, 4919-4924.	2.4	75
29	Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with nearâ€isogenic lines of wheat. Physiologia Plantarum, 2014, 151, 230-242.	2.6	71
30	Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. , 2002, , 93-105.		61
31	Reduced growth and yield of wheat with conservation cropping. II. Soil biological factors limit growth under direct drilling. Australian Journal of Agricultural Research, 1995, 46, 75.	1.5	56
32	Stored xylem sap from wheat and barley in drying soil contains a transpiration inhibitor with a large molecular size. Plant, Cell and Environment, 1993, 16, 867-872.	2.8	47
33	Early vigour improves phosphate uptake in wheat. Journal of Experimental Botany, 2015, 66, 7089-7100.	2.4	46
34	Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water. Journal of Experimental Botany, 2019, 70, 4963-4974.	2.4	43
35	Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control. Journal of Experimental Botany, 2016, 67, 3709-3718.	2.4	42
36	The barley anion channel, <scp>HvALMT1</scp> , has multiple roles in guard cell physiology and grain metabolism. Physiologia Plantarum, 2015, 153, 183-193.	2.6	40

RICHARD A JAMES

#	Article	IF	CITATIONS
37	Evaluation of the Phenotypic Repeatability of Canopy Temperature in Wheat Using Continuous-Terrestrial and Airborne Measurements. Frontiers in Plant Science, 2019, 10, 875.	1.7	36
38	Characterisation of HvALMT1 function in transgenic barley plants. Functional Plant Biology, 2011, 38, 163.	1.1	35
39	Hordeum marinum-wheat amphiploids maintain higher leaf K+:Na+ and suffer less leaf injury than wheat parents in saline conditions. Plant and Soil, 2011, 348, 365-377.	1.8	28
40	Infrared Thermography in Plant Phenotyping for Salinity Tolerance. , 2012, 913, 173-189.		23
41	Does water and phosphorus uptake limit leaf growth of Rhizoctonia-infected wheat seedlings?. Plant and Soil, 1999, 209, 157-166.	1.8	20
42	Contribution of Rhizoctonia to reduced seedling growth of direct-drilled wheat: studies with intact cores. Australian Journal of Agricultural Research, 1997, 48, 1231.	1.5	8
43	Transcriptional variation is associated with differences in shoot sodium accumulation in distinct barley varieties. Environmental and Experimental Botany, 2019, 166, 103812.	2.0	5
44	Impact of Varying Light and Dew on Ground Cover Estimates from Active NDVI, RGB, and LiDAR. Plant Phenomics, 2021, 2021, 9842178.	2.5	3