Seung-Hwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4731539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of 1-MW Inductive Power Transfer System for a High-Speed Train. IEEE Transactions on Industrial Electronics, 2015, 62, 6242-6250.	7.9	345
2	A New Design Methodology for a 300-kW, Low Flux Density, Large Air Gap, Online Wireless Power Transfer System. IEEE Transactions on Industry Applications, 2016, 52, 4234-4242.	4.9	46
3	Development of a 60 kHz, 180 kW, Over 85% Efficiency Inductive Power Transfer System for a Tram. Energies, 2016, 9, 1075.	3.1	22
4	<i>dq</i> > Synchronous Reference Frame Model of A Series–Series Tuned Inductive Power Transfer System. IEEE Transactions on Industrial Electronics, 2020, 67, 10325-10334.	7.9	19
5	Impact of Rebar and Concrete on Power Dissipation of Wireless Power Transfer Systems. IEEE Transactions on Industrial Electronics, 2020, 67, 276-287.	7.9	13
6	Load Voltage and Current Observers for Series–Series Wireless Power Transfer System. IEEE Transactions on Industrial Electronics, 2022, 69, 5615-5624.	7.9	9
7	A Novel Solid-State Transformer With Loosely Coupled Resonant Dual-Active-Bridge Converters. IEEE Transactions on Industry Applications, 2022, 58, 709-719.	4.9	9
8	A study on de-icing for railway turnouts using 250kHz-200W-class induction heating system. AIP Advances, 2019, 9, .	1.3	8
9	6.78-MHz, 50-W Wireless Power Supply Over a 60-cm Distance Using a GaN-Based Full-Bridge Inverter. Energies, 2019, 12, 371.	3.1	7
10	Development of 50W High Quality Factor Printed Circuit Board Coils for a 6.78MHz, 60cm Air-gap Wireless Power Transfer System. Journal of the Korean Society for Railway, 2016, 19, 468-479.	0.1	3
11	A New Multilevel Inductive Power Transfer System. , 2020, , .		3
12	Voltage balancing control of a series-resonant DAB converter with a virtual line shaft. Journal of Power Electronics, 0, , .	1.5	3
13	Novel Transformerless Multilevel Inductive Power Transfer System. IEEE Access, 2022, 10, 55565-55573.	4.2	2
14	Load Estimation of A Series-Series Tuned Wireless Power Transfer System. , 2019, , .		1
15	Design Methodology for A Transformerless Multilevel Inductive Power Transfer System. , 2021, , .		1
16	High dv/dt immunity, high insulation voltage, ultra-compact, inductive power supply for gate-drivers of wide-bandgap semiconductor switches. Journal of Power Electronics, 2022, 22, 935-946.	1.5	1
17	Development of a Wireless Power Supply System for an E-Bike. , 2019, , .		0