Steven Sai Hang Ho

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4730717/steven-sai-hang-ho-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,622 61 40 149 h-index g-index citations papers 6.2 5,602 165 5.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
149	Emission characteristics and assessment of potential health risks on PM2.5-bound organics from incense burning. <i>Atmospheric Pollution Research</i> , 2022 , 13, 101326	4.5	Ο
148	Source profiles of molecular structure and light absorption of PM brown carbon from residential coal combustion emission in Northwestern China <i>Environmental Pollution</i> , 2022 , 118866	9.3	0
147	Explorations of tire and road wear microplastics in road dust PM at eight megacities in China Science of the Total Environment, 2022, 153717	10.2	1
146	Seasonal and diurnal variation of PM2.5 HULIS over Xi'an in Northwest China: Optical properties, chemical functional group, and relationship with reactive oxygen species (ROS). <i>Atmospheric Environment</i> , 2022 , 268, 118782	5.3	2
145	Variations of Personal Exposure to Particulate Nitrated Phenols from Heating Energy Renovation in China: The First Assessment on Associated Toxicological Impacts with Particle Size Distributions <i>Environmental Science & Distributions</i>	10.3	1
144	Response of aerosol composition to the clean air actions in Baoji city of Fen-Wei River Basin <i>Environmental Research</i> , 2022 , 210, 112936	7.9	1
143	Emission profiles of volatile organic compounds from various geological maturity coal and its clean coal briquetting in China. <i>Atmospheric Research</i> , 2022 , 274, 106200	5.4	1
142	Characteristics and health risks of parent, alkylated, and oxygenated PAHs and their contributions to reactive oxygen species from PM vehicular emissions in the longest tunnel in downtown Xi'an, China <i>Environmental Research</i> , 2022 , 113357	7.9	0
141	Differential health and economic impacts from the COVID-19 lockdown between the developed and developing countries: Perspective on air pollution. <i>Environmental Pollution</i> , 2021 , 293, 118544	9.3	6
140	Chemical characteristics and sources of nitrogen-containing organic compounds at a regional site in the North China Plain during the transition period of autumn and winter. <i>Science of the Total Environment</i> , 2021 , 151451	10.2	1
139	Light absorption properties and molecular profiles of HULIS in PM emitted from biomass burning in traditional "Heated Kang" in Northwest China. <i>Science of the Total Environment</i> , 2021 , 776, 146014	10.2	4
138	Temporal and spatial discrepancies of VOCs in an industrial-dominant city in China during summertime. <i>Chemosphere</i> , 2021 , 264, 128536	8.4	3
137	Comprehensive characterization and health assessment of occupational exposures to volatile organic compounds (VOCs) in Xi'an, a major city of northwestern China. <i>Atmospheric Environment</i> , 2021 , 246, 118085	5.3	6
136	A 150-year record of black carbon (soot and char) and polycyclic aromatic compounds deposition in Lake Phayao, north Thailand. <i>Environmental Pollution</i> , 2021 , 269, 116148	9.3	5
135	A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: Observations, source attributions and ozone sensitivity. <i>Environment International</i> , 2021 , 146, 106279	12.9	7
134	Chemical and toxicological characterization of particulate emissions from diesel vehicles. <i>Journal of Hazardous Materials</i> , 2021 , 405, 124613	12.8	18
133	Parent, alkylated, oxygenated and nitrated polycyclic aromatic hydrocarbons in PM emitted from residential biomass burning and coal combustion: A novel database of 14 heating scenarios. <i>Environmental Pollution</i> , 2021 , 268, 115881	9.3	19

132	Characterization of organic aerosols in PM and their cytotoxicity in an urban roadside area in Hong Kong. <i>Chemosphere</i> , 2021 , 263, 128239	8.4	5
131	Spatial distribution and sources of winter black carbon and brown carbon in six Chinese megacities. <i>Science of the Total Environment</i> , 2021 , 762, 143075	10.2	14
130	A long-term chemical characteristics and source apportionment of atmospheric rainfall in a northwest megacity of Xi'an, China. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 31207-3121	7 ^{5.1}	1
129	The Roles of N, S, and O in Molecular Absorption Features of Brown Carbon in PM2.5 in a Typical Semi-Arid Megacity in Northwestern China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD034791	4.4	8
128	Emission factors, characteristics, and gas-particle partitioning of polycyclic aromatic hydrocarbons in PM emitted for the typical solid fuel combustions in rural Guanzhong Plain, China. <i>Environmental Pollution</i> , 2021 , 286, 117573	9.3	7
127	A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook. <i>Environment International</i> , 2021 , 156, 106710	12.9	4
126	Photochemical aging process on PM2.5 bound PAHs emission from solid fuel combustion in traditional and improved stoves. <i>Atmospheric Research</i> , 2021 , 263, 105807	5.4	O
125	Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 5425-5436	6.8	6
124	Indoor, outdoor, and personal exposure to PM and their bioreactivity among healthy residents of Hong Kong. <i>Environmental Research</i> , 2020 , 188, 109780	7.9	11
123	Non-polar organic compounds, volatility and oxidation reactivity of particulate matter emitted from diesel engine fueled with ternary fuels in blended and fumigation modes. <i>Chemosphere</i> , 2020 , 249, 126086	8.4	12
122	Cytotoxicity of PM vehicular emissions in the Shing Mun Tunnel, Hong Kong. <i>Environmental Pollution</i> , 2020 , 263, 114386	9.3	13
121	Characteristics of fresh and aged volatile organic compounds from open burning of crop residues. <i>Science of the Total Environment</i> , 2020 , 726, 138545	10.2	3
120	Evaluation of the Oxidation Flow Reactor for particulate matter emission limit certification. <i>Atmospheric Environment</i> , 2020 , 224, 117086	5.3	6
119	Characterizations of PM-bound organic compounds and associated potential cancer risks on cooking emissions from dominated types of commercial restaurants in northwestern China. <i>Chemosphere</i> , 2020 , 261, 127758	8.4	15
118	Cytotoxicity and Potential Pathway to Vascular Smooth Muscle Cells Induced by PM Emitted from Raw Coal Chunks and Clean Coal Combustion. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 14482	-1449:	3 ¹¹
117	Characteristics and cytotoxicity of indoor fine particulate matter (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Hong Kong. <i>Air Quality, Atmosphere and Health</i> , 2019 , 12, 1459-1468	5.6	8
116	Gaseous, PM_{2.5} Mass, and Speciated Emission Factors from Laboratory Chamber Peat Combustion 2019 ,		1
115	Wintertime Optical Properties of Primary and Secondary Brown Carbon at a Regional Site in the North China Plain. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	27

114	Characterization of particulate-bound polycyclic aromatic compounds (PACs) and their oxidations in heavy polluted atmosphere: A case study in urban Beijing, China during haze events. <i>Science of the Total Environment</i> , 2019 , 660, 1392-1402	10.2	13
113	Evaluation and characterization of volatile air toxics indoors in a heavy polluted city of northwestern China in wintertime. <i>Science of the Total Environment</i> , 2019 , 662, 470-480	10.2	27
112	Personal exposure to PM_{2.5} emitted from typical anthropogenic sources in southern West Africa: chemical characteristics and associated health risks. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 6637-6657	6.8	15
111	The effects of particle-induced oxidative damage from exposure to airborne fine particulate matter components in the vicinity of landfill sites on Hong Kong. <i>Chemosphere</i> , 2019 , 230, 578-586	8.4	8
110	Characterization of polycyclic aromatic hydrocarbon (PAHs) source profiles in urban PM fugitive dust: A large-scale study for 20 Chinese cites. <i>Science of the Total Environment</i> , 2019 , 687, 188-197	10.2	19
109	Characterization of PM2.5 source profiles from typical biomass burning of maize straw, wheat straw, wood branch, and their processed products (briquette and charcoal) in China. <i>Atmospheric Environment</i> , 2019 , 205, 36-45	5.3	37
108	Personal exposure to PM-bound organic species from domestic solid fuel combustion in rural Guanzhong Basin, China: Characteristics and health implication. <i>Chemosphere</i> , 2019 , 227, 53-62	8.4	20
107	Impacts of short-term mitigation measures on PM_{2.5} and radiative effects: a case study at a regional background site near Beijing, China. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1881-1899	6.8	13
106	Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 617-638	6.8	67
105	Changes in PM_{2.5} peat combustion source profiles with atmospheric aging in an oxidation flow reactor. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 5475-5501	4	8
104	Gaseous, PM_{2.5} mass, and speciated emission factors from laboratory chamber peat combustion. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14173-14193	6.8	12
103	Seasonal behavior of water-soluble organic nitrogen in fine particulate matter (PM2.5) at urban coastal environments in Hong Kong. <i>Air Quality, Atmosphere and Health</i> , 2019 , 12, 389-399	5.6	4
102	PM-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. <i>Journal of Environmental Sciences</i> , 2019 , 77, 11-19	6.4	68
101	Personal exposure to fine particles (PM) and respiratory inflammation of common residents in Hong Kong. <i>Environmental Research</i> , 2018 , 164, 24-31	7.9	40
100	Decrease of VOC emissions from vehicular emissions in Hong Kong from 2003 to 2015: Results from a tunnel study. <i>Atmospheric Environment</i> , 2018 , 177, 64-74	5.3	35
99	Hong Kong vehicle emission changes from 2003 to 2015 in the Shing Mun Tunnel. <i>Aerosol Science and Technology</i> , 2018 , 52, 1085-1098	3.4	14
98	Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime. <i>Science of the Total Environment</i> , 2018 , 633, 308-316	10.2	23
97	Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka. <i>Atmospheric Pollution Research</i> , 2018 , 9, 270-277	4.5	6

(2017-2018)

96	on health risks and effective inflammatory responses in Northwestern China. <i>Environmental Geochemistry and Health</i> , 2018 , 40, 849-863	4.7	6
95	VOCs emission profiles from rural cooking and heating in Guanzhong Plain, China and its potential effect on regional O₃ and SOA formation 2018 ,		2
94	Indoor air pollutant exposure and determinant factors controlling household air quality for elderly people in Hong Kong. <i>Air Quality, Atmosphere and Health,</i> 2018 , 11, 695-704	5.6	19
93	Chemical characterization of PM from a southern coastal city of China: applications of modeling and chemical tracers in demonstration of regional transport. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 20591-20605	5.1	2
92	Quantification of oxygenated polycyclic aromatic hydrocarbons in ambient aerosol samples using in-injection port thermal desorption-gas chromatography/mass spectrometry: Method exploration and validation. <i>International Journal of Mass Spectrometry</i> , 2018 , 433, 25-30	1.9	12
91	Effects of Chemical Composition of PM2.5 on Visibility in a Semi-Rural City of Sichuan Basin. <i>Aerosol and Air Quality Research</i> , 2018 , 18, 957-968	4.6	12
90	Intra-Urban Levels, Spatial Variability, Possible Sources and Health Risks of PM2.5 Bound Phthalate Esters in Xilln. <i>Aerosol and Air Quality Research</i> , 2018 , 18, 485-496	4.6	5
89	Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons and n-Alkanes in PM2.5 in Xiamen. <i>Aerosol and Air Quality Research</i> , 2018 , 18, 1673-1683	4.6	14
88	Optimization and evaluation of multi-bed adsorbent tube method in collection of volatile organic compounds. <i>Atmospheric Research</i> , 2018 , 202, 187-195	5.4	18
87	Characteristics of polycyclic aromatic hydrocarbons in PM emitted from different cooking activities in China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 4750-4760	5.1	31
86	Personal exposure to PM_{2.5} emitted from typical anthropogenic sources in Southern West Africa (SWA): Chemical characteristics and associated health risks 2018 ,		1
85	Quantification of nitrated-polycyclic aromatic hydrocarbons in atmospheric aerosol samples with in-injection port thermal desorption-gas chromatography/ negative chemical ionization mass spectrometry method. <i>Atmospheric Environment</i> , 2018 , 192, 84-93	5.3	9
84	Challenges on field monitoring of indoor air quality in china. <i>Indoor and Built Environment</i> , 2017 , 26, 576	- 5.8 4	7
83	Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations. <i>Science of the Total Environment</i> , 2017 , 579, 212-220	10.2	18
82	Influences of relative humidities and temperatures on the collection of C2-C5 aliphatic hydrocarbons with multi-bed (Tenax TA, Carbograph 1TD, Carboxen 1003) sorbent tube method. <i>Atmospheric Environment</i> , 2017 , 151, 45-51	5.3	23
81	A 10-year observation of PM-bound nickel in Xi'an, China: Effects of source control on its trend and associated health risks. <i>Scientific Reports</i> , 2017 , 7, 41132	4.9	21
8o	Concentrations, sources and health effects of parent, oxygenated- and nitrated- polycyclic aromatic hydrocarbons (PAHs) in middle-school air in Xi'an, China. <i>Atmospheric Research</i> , 2017 , 192, 1-10	5.4	35
79	Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China. <i>Atmospheric Environment</i> , 2017 , 161, 1-12	5.3	79

78	Spatial distributions of airborne di-carbonyls in urban and rural areas in China. <i>Atmospheric Research</i> , 2017 , 186, 1-8	5.4	8
77	Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air. <i>Atmospheric Environment</i> , 2017 , 152, 51-60	5.3	40
76	Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM in the Beijing-Tianjin-Hebei region. <i>Environmental Pollution</i> , 2017 , 231, 1075-1084	9.3	83
75	Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter. <i>Environmental Pollution</i> , 2017 , 231, 1330-1343	9.3	28
74	Source apportionment of VOCs and their impacts on surface ozone in an industry city of Baoji, Northwestern China. <i>Scientific Reports</i> , 2017 , 7, 9979	4.9	30
73	Characterization and health risk assessment of PM-bound organics inside and outside of Chinese smoking lounges. <i>Chemosphere</i> , 2017 , 186, 438-445	8.4	11
72	Relationships between Outdoor and Personal Exposure of Carbonaceous Species and Polycyclic Aromatic Hydrocarbons (PAHs) in Fine Particulate Matter (PM2.5) at Hong Kong. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 666-679	4.6	15
71	PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs), Oxygenated-PAHs and Phthalate Esters (PAEs) inside and outside Middle School Classrooms in Xilln, China: Concentration, Characteristics and Health Risk Assessment. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 1811-1824	4.6	14
70	Comprehensive study on the removal of chromate from aqueous solution by synthesized kaolin supported nanoscale zero-valent iron. <i>Desalination and Water Treatment</i> , 2016 , 57, 5065-5078		10
69	Microscale spatial distribution and health assessment of PM-bound polycyclic aromatic hydrocarbons (PAHs) at nine communities in Xi'an, China. <i>Environmental Pollution</i> , 2016 , 218, 1065-107.	39.3	49
68	Chemical characteristics of rainwater in Sichuan basin, a case study of Ya'an. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 13088-99	5.1	22
67	Characterization of parent and oxygenated-polycyclic aromatic hydrocarbons (PAHs) in Xi'an, China during heating period: An investigation of spatial distribution and transformation. <i>Chemosphere</i> , 2016 , 159, 367-377	8.4	40
66	Characterization of PM2.5 in Guangzhou, China: uses of organic markers for supporting source apportionment. <i>Science of the Total Environment</i> , 2016 , 550, 961-971	10.2	70
65	Chemical composition and bioreactivity of PM2.5 during 2013 haze events in China. <i>Atmospheric Environment</i> , 2016 , 126, 162-170	5.3	53
64	PM2.5 from the Guanzhong Plain: Chemical composition and implications for emission reductions. <i>Atmospheric Environment</i> , 2016 , 147, 458-469	5.3	49
63	Risk Assessment of Indoor Formaldehyde and Other Carbonyls in Campus Environments in Northwestern China. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 1967-1980	4.6	16
62	Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. <i>Molecules</i> , 2016 , 21, 56	4.8	168
61	Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years. <i>Scientific Reports</i> , 2016 , 6, 19151	4.9	25

(2013-2016)

60	Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning. <i>Environmental Pollution</i> , 2016 , 213, 524-532	9.3	38	
59	Non-polar organic compounds in marine aerosols over the northern South China Sea: Influence of continental outflow. <i>Chemosphere</i> , 2016 , 153, 332-9	8.4	20	
58	Concentrations, particle-size distributions, and indoor/outdoor differences of polycyclic aromatic hydrocarbons (PAHs) in a middle school classroom in Xi'an, China. <i>Environmental Geochemistry and Health</i> , 2015 , 37, 861-73	4.7	30	
57	Characteristics of PM2.5 emitted from different cooking activities in China. <i>Atmospheric Research</i> , 2015 , 166, 83-91	5.4	60	
56	Effects of non-protein-type amino acids of fine particulate matter on E-cadherin and inflammatory responses in mice. <i>Toxicology Letters</i> , 2015 , 237, 174-80	4.4	14	
55	Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China. <i>Science of the Total Environment</i> , 2015 , 530-531, 110-119	10.2	50	
54	Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies. <i>Atmospheric Environment</i> , 2015 , 122, 809-818	5.3	45	
53	Dicarboxylic acids, ketocarboxylic acids, Edicarbonyls, fatty acids and benzoic acid in PM_{2.5} aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 3111-3123	6.8	52	
52	Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China. <i>Atmospheric Environment</i> , 2015 , 106, 252-261	5.3	46	
51	Spatiotemporal distribution of carbonyl compounds in China. <i>Environmental Pollution</i> , 2015 , 197, 316-3	32 4 .3	25	
50	Air pollution effects on fetal and child development: a cohort comparison in China. <i>Environmental Pollution</i> , 2014 , 185, 90-6	9.3	43	
49	Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi'an, China. <i>Journal of the Air and Waste Management Association</i> , 2014 , 64, 1317-27	2.4	51	
48	Biases in ketone measurements using DNPH-coated solid sorbent cartridges. <i>Analytical Methods</i> , 2014 , 6, 967-974	3.2	12	
47	Diurnal and seasonal trends of carbonyl compounds in roadside, urban, and suburban environment of Hong Kong. <i>Atmospheric Environment</i> , 2014 , 89, 43-51	5.3	45	
46	Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2014 , 66, 22577	3.3	52	
45	Evaluation of hazardous airborne carbonyls on a university campus in southern China. <i>Journal of the Air and Waste Management Association</i> , 2014 , 64, 903-16	2.4	12	
44	Seasonal variations of monocarbonyl and dicarbonyl in urban and sub-urban sites of Xi'an, China. <i>Environmental Monitoring and Assessment</i> , 2014 , 186, 2835-49	3.1	26	
43	Hazardous airborne carbonyls emissions in industrial workplaces in China. <i>Journal of the Air and Waste Management Association</i> , 2013 , 63, 864-77	2.4	13	

42	Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003. <i>Atmospheric Research</i> , 2013 , 120-121, 88-98	5.4	23
41	Characteristics of fine particulate non-polar organic compounds in Guangzhou during the 16th Asian Games: Effectiveness of air pollution controls. <i>Atmospheric Environment</i> , 2013 , 76, 94-101	5.3	53
40	Preparation and characterization of EDTAD-modified magnetic-Fe3O4 chitosan composite: application of comparative adsorption of dye wastewater with magnetic chitosan. <i>Water Science and Technology</i> , 2013 , 68, 209-16	2.2	5
39	Characteristics and sources of carbonaceous aerosols from Shanghai, China. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 803-817	6.8	102
38	Volatile Organic Compounds in Roadside Environment of Hong Kong. <i>Aerosol and Air Quality Research</i> , 2013 , 13, 1331-1347	4.6	19
37	Technical Note: Concerns on the Use of Ozone Scrubbers for Gaseous Carbonyl Measurement by DNPH-Coated Silica Gel Cartridge. <i>Aerosol and Air Quality Research</i> , 2013 , 13, 1151-1160	4.6	11
36	Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products. <i>Atmospheric Environment</i> , 2012 , 59, 224-231	5.3	25
35	Quantification of carbonate carbon in aerosol filter samples using a modified thermal/optical carbon analyzer (M-TOCA). <i>Analytical Methods</i> , 2012 , 4, 2578	3.2	3
34	Characteristics of carbonaceous aerosol in PM2.5: Pearl Delta River Region, China. <i>Atmospheric Research</i> , 2012 , 104-105, 227-236	5.4	66
33	Seasonal and diurnal variations of mono- and di-carbonyls in Xi'an, China. <i>Atmospheric Research</i> , 2012 , 113, 102-112	5.4	42
32	Optimization of solid-phase microextraction (SPME) to determine airborne biogenic volatile organic compounds (BVOCs): An application for measurement of household cleaning products. <i>Analytical Methods</i> , 2012 , 4, 277-283	3.2	6
31	Chemical characteristics of PM2.5 and organic aerosol source analysis during cold front episodes in Hong Kong, China. <i>Atmospheric Research</i> , 2012 , 118, 41-51	5.4	22
30	Carbonyl emissions from vehicular exhausts sources in Hong Kong. <i>Journal of the Air and Waste Management Association</i> , 2012 , 62, 221-34	2.4	31
29	An Environmental Chamber Study of the Characteristics of Air Pollutants Released from Environmental Tobacco Smoke. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 1269-1281	4.6	22
28	Real-Time Characterization of Particle-Bound Polycyclic Aromatic Hydrocarbons at a Heavily Trafficked Roadside Site. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 1181-1188	4.6	10
27	Characterization of Particulate-Phase High Molecular Weight Mono-Carbonyls (C# > 5) and Dicarbonyls in Urban Atmosphere of Xilln, China. <i>Aerosol and Air Quality Research</i> , 2012 , 12, 892-901	4.6	11
26	Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM_{2.5} in Pearl Delta River Region, China. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2197-2208	6.8	85
25	Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1787-94	12.8	26

(2005-2011)

24	Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls. <i>Atmospheric Environment</i> , 2011 , 45, 261-265	5.3	49
23	Characteristics of carbonate carbon in PM2.5 in a typical semi-arid area of Northeastern China. <i>Atmospheric Environment</i> , 2011 , 45, 1268-1274	5.3	14
22	Precautions for in-injection port thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) as applied to aerosol filter samples. <i>Atmospheric Environment</i> , 2011 , 45, 1491-1496	5.3	57
21	Characterization of biogenic volatile organic compounds (BVOCs) in cleaning reagents and air fresheners in Hong Kong. <i>Atmospheric Environment</i> , 2011 , 45, 6191-6196	5.3	19
20	Nonpolar organic compounds in fine particles: quantification by thermal desorption-GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 401, 3125-39	4.4	19
19	Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. <i>Journal of Hazardous Materials</i> , 2011 , 186, 344-51	12.8	148
18	Provenance of Chinese Loess: Evidence from Stable Lead Isotope. <i>Terrestrial, Atmospheric and Oceanic Sciences</i> , 2011 , 22, 305	1.8	14
17	Dicarboxylic acids, ketocarboxylic acids, Edicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). <i>Journal of Geophysical Research</i> , 2010 , 115,		77
16	Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. <i>Atmospheric Environment</i> , 2009 , 43, 6343-6351	5.3	115
15	Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7491-7504	6.8	113
14	Advances in integrated and continuous measurements for particle mass and chemical composition. <i>Journal of the Air and Waste Management Association</i> , 2008 , 58, 141-63	2.4	74
13	Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. <i>Journal of Chromatography A</i> , 2008 , 1200, 217-27	4.5	107
12	The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 1521-41	2.3	113
11	Real-world emission factors of fifteen carbonyl compounds measured in a Hong Kong tunnel. <i>Atmospheric Environment</i> , 2007 , 41, 1747-1758	5.3	51
10	Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong. <i>Journal of Environmental Monitoring</i> , 2007 , 9, 1402-9		41
9	Exposure to PM2.5 and PAHs from the Tong Liang, China epidemiological study. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2006 , 41, 517-42	2.3	39
8	Carbonyl emissions from commercial cooking sources in Hong Kong. <i>Journal of the Air and Waste Management Association</i> , 2006 , 56, 1091-8	2.4	69
7	The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. <i>Atmospheric Environment</i> , 2005 , 39, 3735-3749	5.3	220

6	Differentiation of coloured inks of inkjet printer cartridges by thin layer chromatography and high performance liquid chromatography. <i>Science and Justice - Journal of the Forensic Science Society</i> , 2005 , 45, 187-94	2	18
5	In-injection port thermal desorption and subsequent gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. <i>Journal of Chromatography A</i> , 2004 , 1059, 121-9	4.5	118
4	Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method. <i>Environmental Science & Environmental Science & Environ</i>	10.3	108
2	Feasibility of collection and analysis of airborne carbonyls by on-sorbent derivatization and thermal		Q_
3	desorption. <i>Analytical Chemistry</i> , 2002 , 74, 1232-40	7.8	85
2	desorption. <i>Analytical Chemistry</i> , 2002 , 74, 1232-40 Concentrations of formaldehyde and other carbonyls in environments affected by incense burning. <i>Journal of Environmental Monitoring</i> , 2002 , 4, 728-33	7.8	53