
Xiao-Bo Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4730344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nature Communications, 2018, 9, 2963.	5.8	339
2	Ionization and Anionâ~Ï€ ⁺ Interaction: A New Strategy for Structural Design of Aggregation-Induced Emission Luminogens. Journal of the American Chemical Society, 2017, 139, 16974-16979.	6.6	201
3	Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nature Communications, 2022, 13, 186.	5.8	175
4	Effective structural modification of traditional fluorophores to obtain organic mechanofluorochromic molecules. Journal of Materials Chemistry C, 2018, 6, 5075-5096.	2.7	127
5	Unexpected Copper-Catalyzed Cascade Synthesis of Quinazoline Derivatives. Journal of Organic Chemistry, 2013, 78, 11342-11348.	1.7	109
6	Copper-Catalyzed Three-Component Reaction for Regioselective Aryl- and Heteroarylselenation of Indoles using Selenium Powder. Journal of Organic Chemistry, 2016, 81, 4485-4493.	1.7	109
7	Aggregation-Induced Fluorescence Emission Properties of Dicyanomethylene-1,4-dihydropyridine Derivatives. Journal of Physical Chemistry C, 2015, 119, 6737-6748.	1.5	89
8	Copper-catalyzed direct C–H arylation of pyridine N-oxides with arylboronic esters: one-pot synthesis of 2-arylpyridines. Chemical Communications, 2014, 50, 4292-4295.	2.2	87
9	Anthracene-Fused BODIPYs as Near-Infrared Dyes with High Photostability. Organic Letters, 2011, 13, 6026-6029.	2.4	85
10	Multi-Stimulus-Responsive Fluorescent Properties of Donor-Ï€-Acceptor Indene-1,3-dionemethylene-1,4-dihydropyridine Derivatives. Journal of Physical Chemistry C, 2015, 119, 23138-23148.	1.5	82
11	Bright solid-state red-emissive BODIPYs: facile synthesis and their high-contrast mechanochromic properties. Journal of Materials Chemistry C, 2019, 7, 3471-3478.	2.7	81
12	Excitation-Dependent Triplet–Singlet Intensity from Organic Host–Guest Materials: Tunable Color, White-Light Emission, and Room-Temperature Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 1814-1821.	2.1	81
13	B–N–B Bond Embedded Phenalenyl and Its Anions. Journal of the American Chemical Society, 2017, 139, 15760-15767.	6.6	78
14	Selenium Radical Mediated Cascade Cyclization: Concise Synthesis of Selenated Benzofurans (Benzothiophenes). Organic Letters, 2019, 21, 6710-6714.	2.4	76
15	The use of calcium carbide in one-pot synthesis of symmetric diaryl ethynes. Chemical Communications, 2006, , 4826.	2.2	74
16	Polymer-based fluorescence sensor incorporating triazole moieties for Hg2+ detection via click reaction. Polymer, 2010, 51, 3064-3067.	1.8	73
17	Indene-1,3-dionemethylene-4H-pyran derivatives containing alkoxy chains of various lengths: aggregation-induced emission enhancement, mechanofluorochromic properties and solvent-induced emission changes. Journal of Materials Chemistry C, 2016, 4, 2862-2870.	2.7	68
18	Copper-Catalyzed Three-Component Coupling Reaction of Azoles, Se Powder, and Aryl Iodides. Journal of Organic Chemistry, 2017, 82, 250-255.	1.7	67

#	Article	IF	CITATIONS
19	Pure room temperature phosphorescence emission of an organic host–guest doped system with a quantum efficiency of 64%. Journal of Materials Chemistry C, 2021, 9, 3391-3395.	2.7	52
20	Aza-BODIPY-based D–π–A conjugated polymers with tunable band gap: synthesis and near-infrared emission. Polymer Chemistry, 2013, 4, 520-527.	1.9	51
21	Pd-Catalyzed Intramolecular Aerobic Oxidative C–H Amination of 2-Aryl-3-(arylamino)quinazolinones: Synthesis of Fluorescent Indazolo[3,2- <i>b</i>]quinazolinones. Organic Letters, 2014, 16, 5418-5421.	2.4	51
22	Polymerâ€based fluorescence sensors incorporating chiral binaphthyl and benzo[2,1,3]thiadiazole moieties for Hg ²⁺ detection. Journal of Polymer Science Part A, 2010, 48, 997-1006.	2.5	49
23	Mechanochromic and acidochromic response of 4H-pyran derivatives with aggregation-induced emission properties. Dyes and Pigments, 2017, 141, 428-440.	2.0	48
24	A Novel Glucose/pH Responsive Low-Molecular-Weight Organogel of Easy Recycling. Langmuir, 2013, 29, 13568-13575.	1.6	47
25	Polymorphism and mechanochromism of N-alkylated 1,4-dihydropyridine derivatives containing different electron-withdrawing end groups. Journal of Materials Chemistry C, 2017, 5, 5183-5192.	2.7	45
26	5-(2,6-Bis((E)-4-(dimethylamino)styryl)-1-ethylpyridin-4(1H)-ylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione: aggregation-induced emission, polymorphism, mechanochromism, and thermochromism. Journal of Materials Chemistry C, 2017, 5, 9264-9272.	2.7	45
27	Polymorphism and Multicolor Mechanofluorochromism of a D-ï€-A Asymmetric 4 <i>H</i> -Pyran Derivative with Aggregation-Induced Emission Property. Journal of Physical Chemistry C, 2019, 123, 27742-27751.	1.5	45
28	Palladium-Catalyzed Cascade Reaction of 2-Amino- <i>N</i> ′-arylbenzohydrazides with Triethyl Orthobenzoates To Construct Indazolo[3,2- <i>b</i>]quinazolinones. Journal of Organic Chemistry, 2015, 80, 482-489.	1.7	44
29	Silverâ€Catalyzed Oneâ€Pot Threeâ€Component Selective Synthesis of βâ€Hydroxy Selenides. Advanced Synthesis and Catalysis, 2018, 360, 4336-4340.	2.1	44
30	Mechanofluorochromism, polymorphism and thermochromism of novel D–̀–A piperidin-1-yl-substitued isoquinoline derivatives. Journal of Materials Chemistry C, 2019, 7, 12580-12587.	2.7	44
31	Tunable Phosphorescence/Fluorescence Dual Emissions of Organic Isoquinolineâ€Benzophenone Doped Systems by Alkoxy Engineering. Chemistry - A European Journal, 2020, 26, 17376-17380.	1.7	44
32	A Highly Selective and Sensitive Polymerâ€based Fluorescence Sensor for Hg ²⁺ â€ŀon Detection via Click Reaction. Chemistry - an Asian Journal, 2011, 6, 2725-2729.	1.7	43
33	A photocleavable low molecular weight hydrogel for light-triggered drug delivery. Chinese Chemical Letters, 2019, 30, 485-488.	4.8	41
34	Preparation of nano-sized flake carboxymethyl cassava starch under ultrasonic irradiation. Carbohydrate Polymers, 2011, 84, 1413-1418.	5.1	40
35	A fluorescence sensor based on chiral polymer for highly enantioselective recognition of phenylalaninol. Polymer, 2011, 52, 363-367.	1.8	39
36	Highly sensitive conjugated polymer fluorescent sensors based on benzochalcogendiazole for nickel ions in real-time detection. Journal of Materials Chemistry C, 2014, 2, 7402-7410.	2.7	39

#	Article	IF	CITATIONS
37	Copper-Catalyzed Oxirane-Opening Reaction with Aryl Iodides and Se Powder. Journal of Organic Chemistry, 2016, 81, 7584-7590.	1.7	39
38	Piezochromism, acidochromism, solvent-induced emission changes and cell imaging of D-Ï€-A 1,4-dihydropyridine derivatives with aggregation-induced emission properties. Dyes and Pigments, 2016, 133, 261-272.	2.0	38
39	Excitation-dependent organic phosphors exhibiting different luminescence colors for information anti-counterfeiting. Chemical Engineering Journal, 2022, 429, 132288.	6.6	37
40	The effect of N-alkyl chain length on the photophysical properties of indene-1,3-dionemethylene-1,4-dihydropyridine derivatives. Journal of Materials Chemistry C, 2016, 4, 5970-5980.	2.7	33
41	Transition-Metal-Free Highly Chemoselective and Stereoselective Reduction with Se/DMF/H2O System. Organic Letters, 2018, 20, 5573-5577.	2.4	33
42	Fluorescence sensors based on chiral polymer for highly enantioselective recognition of phenylglycinol. Polymer, 2010, 51, 994-997.	1.8	32
43	Metal-free synthesis of alkynyl alkyl selenides via three-component coupling of terminal alkynes, Se, and epoxides. Green Chemistry, 2018, 20, 1560-1563.	4.6	32
44	A highly selective fluorescent sensor for Hg2+ based on the water-soluble poly(p-phenyleneethynylene). Polymer, 2010, 51, 3425-3430.	1.8	30
45	(R,R)-salen/salan-based polymer fluorescence sensors for Zn2+ detection. Polymer, 2011, 52, 6029-6036.	1.8	30
46	Synthesis and Fluorescence Properties of Chiral Nearâ€Infrared Emissive Polymers Incorporating BODIPY Derivatives and (<i>S</i>)â€Binaphthyl. Macromolecular Chemistry and Physics, 2012, 213, 2238-2245.	1.1	30
47	Direct synthesis of 3-acylbenzothiophenes <i>via</i> the radical cyclization of 2-alkynylthioanisoles with α-oxocarboxylic acids. Chemical Communications, 2018, 54, 14148-14151.	2.2	30
48	Selective [3 + 2] Cycloaddition of Cyclopropenone Derivatives and Elemental Chalcogens. Organic Letters, 2020, 22, 5555-5560.	2.4	30
49	Metalâ€Free Synthesis of Aryl Selenocyanates and Selenaheterocycles with Elemental Selenium. Chemistry - A European Journal, 2021, 27, 944-948.	1.7	28
50	A highly selective and sensitive fluorescence chemosensor based on optically active polybinaphthyls for Hg2+. Polymer, 2009, 50, 5996-6000.	1.8	27
51	Large stokes shift chiral polymers containing (R,R)-salen-based binuclear boron complex: Synthesis, characterization, and fluorescence properties. Polymer, 2012, 53, 3894-3899.	1.8	27
52	Near-infrared emission of novel bent-core V-shaped conjugated polymers based on the B,O-chelated azadipyrromethene structure. Polymer Chemistry, 2013, 4, 4396.	1.9	27
53	A Novel Dâ€i€â€A Conjugated Polymer Chemosensor Based on Benzo[<i>c</i>][1,2,5]selenadiazole for Highly Selective and Sensitive Recognition of Mercury (II) Ions. Macromolecular Chemistry and Physics, 2014, 215, 82-89.	1.1	27
54	A Fluorescent Chemosensor for Transitionâ€Metal Ions Based on Optically Active Polybinaphthyl and 2,2′â€Bipyridine. Macromolecular Chemistry and Physics, 2008, 209, 685-694.	1.1	26

#	Article	IF	CITATIONS
55	Metalâ€Free Facile Synthesis of Multisubstituted 1â€Aminoisoquinoline Derivatives with Dualâ€&tate Emissions. Chemistry - an Asian Journal, 2020, 15, 1692-1700.	1.7	26
56	Influence of Guest/Host Morphology on Room Temperature Phosphorescence Properties of Pure Organic Doped Systems. Journal of Physical Chemistry Letters, 2021, 12, 7357-7364.	2.1	26
57	Synthesis and properties of chiral helical polymers based on optically active polybinaphthyls. Polymer, 2009, 50, 2793-2805.	1.8	25
58	<i>Bay</i> - and <i>Ortho</i> -Octasubstituted Perylenes. Organic Letters, 2017, 19, 5094-5097.	2.4	25
59	Copper-catalyzed <i>ipso</i> -selenation of aromatic carboxylic acids. Organic and Biomolecular Chemistry, 2017, 15, 9718-9726.	1.5	25
60	Achieving crystal-induced room temperature phosphorescence and reversible photochromic properties by strong intermolecular interactions. Journal of Materials Chemistry C, 2020, 8, 17410-17416.	2.7	25
61	Protic acids as third components improve the phosphorescence properties of the guest-host system through hydrogen bonds. Chemical Engineering Journal, 2022, 433, 133530.	6.6	25
62	A Highly Sensitive and Selective Fluorescence Chemosensor for Cu ²⁺ and Zn ²⁺ Based on Solvent Effect. Chinese Journal of Chemistry, 2013, 31, 195-199.	2.6	24
63	Multifunctional properties of a star-shaped triphenylamine-benzene-1,3,5-tricarbohydrazide fluorescent molecule containing multiple flexible chains. Chemical Communications, 2020, 56, 13638-13641.	2.2	24
64	Gelation properties and glucose-sensitive behavior of phenylboronic acid based low-molecular-weight organogels. Tetrahedron, 2015, 71, 2079-2088.	1.0	23
65	D-Ï€-A benzo[c][1,2,5]selenadiazole-based derivatives via an ethynyl bridge: Photophysical properties, solvatochromism and applications as fluorescent sensors. Dyes and Pigments, 2015, 112, 105-115.	2.0	23
66	Synergistic Photo-Copper-Catalyzed Hydroxylation of (Hetero)aryl Halides with Molecular Oxygen. Organic Letters, 2018, 20, 708-711.	2.4	23
67	The Synergistic Effect between Triphenylpyrrole Isomers as Donors, Linking Groups, and Acceptors on the Fluorescence Properties of D–π–A Compounds in the Solid State. Chemistry - A European Journal, 2018, 24, 434-442.	1.7	23
68	Cu atalyzed Radical Selenylation of Olefin: A Direct Access to Vinyl Selenides. Advanced Synthesis and Catalysis, 2020, 362, 2168-2172.	2.1	23
69	Water-soluble benzoselenadiazole-based conjugated polymer fluorescent sensor with high selectivity for ferric ions and mercury ions and possible applications as integrated molecular logic gates. Tetrahedron, 2015, 71, 3453-3462.	1.0	22
70	Catalyst-free oxidative N–N coupling for the synthesis of 1,2,3-triazole compounds with <i>t</i> BuONO. Organic Chemistry Frontiers, 2019, 6, 1481-1484.	2.3	22
71	Pyranone–Arylbenzene Molecules Controlled by the Competition of Local Excited State and Twisted Intramolecular Charge-Transfer State: Dual-State Emission, Polymorphism, and Mechanofluorochromism. Journal of Physical Chemistry C, 2021, 125, 16792-16802.	1.5	22
72	Intramolecular Domino Electrophilic and Thermal Cyclization of <i>peri</i> â€Ethynylene Naphthalene Oligomers. Chemistry - A European Journal, 2011, 17, 14907-14915.	1.7	21

#	Article	IF	CITATIONS
73	Palladium-catalyzed oxidative C bond cleavage with molecular oxygen: one-pot synthesis of quinazolinones from 2-amino benzamides and alkenes. Organic Chemistry Frontiers, 2018, 5, 2734-2738.	2.3	21
74	Photoinduced hydroxylation of arylboronic acids with molecular oxygen under photocatalyst-free conditions. Green Chemistry, 2019, 21, 4971-4975.	4.6	21
75	Two-photon induced excited-state absorption and optical limiting properties in a chiral polymer. Applied Physics Letters, 2013, 102, 043308.	1.5	20
76	α,β-Diaryl unsaturated ketones <i>via</i> palladium-catalyzed ring-opening of cyclopropenones with organoboronic acids. Organic Chemistry Frontiers, 2018, 5, 1651-1654.	2.3	20
77	Phthalocyanine Zincâ€catalyzed Hydroxylation of Aryl Boronic Acids under Visible Light. Advanced Synthesis and Catalysis, 2019, 361, 961-964.	2.1	20
78	Solid-state acidochromic properties of barbituric acid-based 1,4-dihydropyridine derivatives with multiple coloured emissions switching. Dyes and Pigments, 2019, 160, 378-385.	2.0	20
79	Unexpected TFA-catalyzed tandem reaction of benzo[d]oxazoles with 2-oxo-2-arylacetic acids: synthesis of 3-aryl-2H-benzo[b][1,4]oxazin-2-ones and cephalandole A. RSC Advances, 2014, 4, 16705-16709.	1.7	19
80	Mechanofluorochromic properties of fluorescent molecules based on a dicyanomethylene-4H-pyran and indole isomer containing different alkyl chains via an alkene module. RSC Advances, 2017, 7, 42180-42191.	1.7	19
81	Toward helical-shaped diradicaloids: cyclobutenyl o-quinodimethane-bridged indeno[1,2-b]fluorenes. Chemical Communications, 2018, 54, 11383-11386.	2.2	19
82	Enhanced mechanofluorochromic properties of 1,4-dihydropyridine-based fluorescent molecules caused by the introduction of halogen atoms. CrystEngComm, 2019, 21, 4258-4266.	1.3	19
83	Ag atalyzed Cyclization of Arylboronic Acids with Elemental Selenium for the Synthesis of Selenaheterocycles. Advanced Synthesis and Catalysis, 2020, 362, 5639-5644.	2.1	19
84	Ketone–enol tautomerism, polymorphism, mechanofluorochromism and solid-state acidochromism of isoquinolinone–arylidenehydrazine derivatives. Journal of Materials Chemistry C, 2021, 9, 12868-12876.	2.7	19
85	Hydrogen bond induced fluorescence recovery of coumarin-based sensor system. Tetrahedron Letters, 2013, 54, 3822-3825.	0.7	18
86	Synthesis and biological activities of 2â€alkylthioâ€5â€furylmethylideneâ€4 <i>H</i> â€imidazolinâ€4â€ones. Jou of Heterocyclic Chemistry, 2004, 41, 77-83.	rnal 1.4	17
87	9-Ethynylfluoroenyl Radicals: Regioselective Dimerization and Post Ring-Cyclization Reactions. Organic Letters, 2016, 18, 6018-6021.	2.4	17
88	Effect of Connecting Units on Aggregation-Induced Emission and Mechanofluorochromic Properties of Isoquinoline Derivatives with Malononitrile as the Terminal Group. Journal of Physical Chemistry C, 2021, 125, 24180-24188.	1.5	17
89	Selenium atoms induce organic doped systems to produce pure phosphorescence emission. Chemical Communications, 2022, 58, 1179-1182.	2.2	17
90	3,6-Diamino-7,8-dihydroisoquinoline-4-carbonitrile derivatives: unexpected facile synthesis, full-color-tunable solid-state emissions and mechanofluorochromic activities. Organic Chemistry Frontiers, 2021, 8, 856-867.	2.3	15

#	Article	IF	CITATIONS
91	Catalyst and Additiveâ€Free Selective Ringâ€Opening Selenocyanation of Heterocycles with Elemental Selenium and TMSCN. Advanced Synthesis and Catalysis, 2021, 363, 1346-1351.	2.1	15
92	Enantioselective arylation of aldehydes catalyzed by a soluble optically active polybinaphthols ligand. Tetrahedron Letters, 2008, 49, 6823-6826.	0.7	14
93	Preparation, characterization and in vitro release of microparticles based on dextran–rosuvastatin conjugate. Carbohydrate Polymers, 2013, 96, 156-162.	5.1	14
94	Salt/current-triggered stabilization of β-cyclodextrins encapsulated host-guest low-molecular-weight gels. Chinese Chemical Letters, 2020, 31, 369-372.	4.8	14
95	Fluorescent chemosensor based on the conjugated polymer incorporating 2,2â€2â€bipyridyl moiety for transition metal ions. Journal of Applied Polymer Science, 2009, 111, 3137-3143.	1.3	13
96	A polymer based fluorescent sensor for Zn2+ detection and its application for constructing logic gates. Polymer, 2011, 52, 5811-5816.	1.8	13
97	A Stable <i>N</i> â€Annulated Peryleneâ€Bridged Bisphenoxyl Diradicaloid and the Corresponding Boron Trifluoride Complex. Chemistry - A European Journal, 2017, 23, 9419-9424.	1.7	13
98	Photoinduced Hydroxylation of Organic Halides under Mild Conditions. Organic Letters, 2019, 21, 8479-8484.	2.4	13
99	Aggregationâ€Induced Emissionâ€Active 1,4â€Dihydropyridineâ€Based Dualâ€Phase Fluorescent Sensor with Multiple Functions. Chemistry - an Asian Journal, 2019, 14, 2242-2250.	1.7	13
100	Three-Component Reactions of Alkynone <i>o</i> -Methyloximes, Element Selenium, and Boronic Acids Leading to 4-Organoselenylisoxazoles. ACS Omega, 2020, 5, 23358-23363.	1.6	13
101	A facile approach toward 1,2-diazabenzo[ghi]perylene derivatives: structures and electronic properties. Chemical Communications, 2017, 53, 6740-6743.	2.2	12
102	The influence of different N-substituted groups on the mechanochromic properties of 1,4-dihydropyridine derivatives with simple structures. RSC Advances, 2017, 7, 51444-51451.	1.7	12
103	Synthesis, crystal structures and solid-state acidochromism of multiaryl-substituted pyridine derivatives with aggregation-induced emission property. Dyes and Pigments, 2021, 188, 109217.	2.0	12
104	The effect of molecular symmetry on the mechanofluorochromic properties of 4H-pyran derivatives. Dyes and Pigments, 2019, 162, 203-213.	2.0	11
105	Synthesis and Fluorescent Properties of a Chiral Conjugated Polymer Based on (<i>S</i>)-2,2′-Binaphtho-20-crown-6. Bulletin of the Chemical Society of Japan, 2008, 81, 1116-1124.	2.0	10
106	Synthesis, optical and electrochemical properties of novel D-Ï€-A type conjugated polymers based on benzo[c][1,2,5]selenadiazole unit via alkyne module. Polymer, 2013, 54, 6158-6164.	1.8	10
107	Regioselective C–H chlorination: towards the sequential difunctionalization of phenol derivatives and late-stage chlorination of bioactive compounds. RSC Advances, 2017, 7, 46636-46643.	1.7	10
108	Synthesis and Properties of Novel Imidazolone Derivatives Containing a Sulfur Atom. Phosphorus, Sulfur and Silicon and the Related Elements, 2007, 182, 939-950.	0.8	9

#	Article	IF	CITATIONS
10	9 A fluorescent chemosensor based on optically active 2,2′â€binaphthoâ€20â€crownâ€6 for metal ions. Polymer International, 2010, 59, 712-718.	1.6	9
110	Synthesis and photoelectric properties of novel indeno[2,1-a]phenalene-based derivatives. Dyes and Pigments, 2013, 97, 389-396.	2.0	9
111	Ag2O-promoted ring-opening reactions of cyclopropenones with oximes. Organic and Biomolecular Chemistry, 2020, 18, 5822-5825.	1.5	9
112	Stacking-dependent tetracolour luminescence and mechanofluorochromic properties of an isoquinoline derivative with aggregation-induced emission. Materials Chemistry Frontiers, 2022, 6, 459-465.	3.2	9
113	Construction of Mechanofluorochromic and Aggregationâ€Induced Emission Materials Based on 4â€5ubstituted Isoquinoline Derivatives. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
114	Synthesis and self-assembly of a D _{3h} symmetric polycyclic aromatic hydrocarbon into a rigid 2D honeycomb network. New Journal of Chemistry, 2017, 41, 3260-3264.	1.4	8
11{	Low Molecular Weight Hydrogel for Super Efficient Separation of Small Organic Molecules Based on Size Effect. ACS Sustainable Chemistry and Engineering, 2019, 7, 11062-11068.	3.2	8
116	An Unexpected 4,5â€Diphenylâ€2,7â€naphthyridine Derivative with Aggregationâ€Induced Emission and Mechanofluorochromic Properties Obtained from a 3,5â€Diphenylâ€4 <i>H</i> â€pyran Derivative. Chemistry - an Asian Journal, 2020, 15, 3437-3443.	1.7	8
117	Click Chemistry Approach to Fluorescence-Based Polybinaphthyls Incorporating a Triazole Moiety for Hg²+ Recognition. Synlett, 2010, 2010, 453-456.	1.0	7
118	Reversible photochromic properties of 4,5,6-triaryl-4 <i>H</i> -pyran derivatives in a solid state. Materials Chemistry Frontiers, 2021, 5, 3413-3421.	3.2	7
119	An (NH ₄) ₂ S ₂ O ₈ -promoted cross-coupling of thiols/diselenides and sulfoxides for the synthesis of unsymmetrical disulfides/selenosulfides. Chemical Communications, 2022, 58, 6550-6553.	2.2	7
120	Novel Synthetic Route to Fluorinated β arbolines by Oneâ€Pot Reaction. Synthetic Communications, 2005, 35, 511-519.	1.1	6
12	Synthesis and Fluorescent Properties of Chiral Polymer Complexes Incorporating Bipyridine and Eu(III) or Gd(III). Chinese Journal of Chemistry, 2009, 27, 1179-1185.	2.6	6
122	Polarization-induced control of two-photon excited fluorescence in a chiral polybinaphthyl. Optics Letters, 2011, 36, 2982.	1.7	6
123	³ Selective fluorescent probe based on Schiff base derived from hydroxymethyl coumarin and aminated Sudan I dye for Mg2+ detection. Arabian Journal of Chemistry, 2017, 10, S2729-S2735.	2.3	6
124	Synthesis and photophysical and mechanochromic properties of novel 2,3,4,6-tetraaryl-4 <i>H</i> -pyran derivatives. CrystEngComm, 2020, 22, 6529-6535.	1.3	6
12	Cascade Ring-Opening Dual Halogenation of Cyclopropenones with Saturated Oxygen Heterocycles. Organic Letters, 2021, 23, 9425-9430.	2.4	6
120	6 Cobalt-catalyzed selective hydroacylation of alkynes. Organic Chemistry Frontiers, 2021, 8, 6048-6052.	2.3	5

#	Article	IF	CITATIONS
127	1,7/8-Substituted isoquinoline derivatives: position isomerism caused by HIO ₃ -induced dehydrogenation and solid-state fluorescence stimulus-responsive properties. Journal of Materials Chemistry C, 2022, 10, 9875-9881.	2.7	5
128	Synthesis and Biological Activities of New Chiral Imidazolinone Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 185, 117-128.	0.8	4
129	Fluorescence Polymer Incorporating Triazole and Benzo[2,1,3]thiadiazole Moieties for Ni²+ Detection. Synlett, 2010, 2010, 1841-1844.	1.0	4
130	A Multiple Stimuliâ€5ensitive Lowâ€Molecularâ€Weight Gel with an Aggregateâ€Induced Emission Effect for Sol–Gel Transition Detection. ChemistryOpen, 2018, 7, 457-462.	0.9	4
131	Synthesis, crystal structures, and mechanochromic properties of bulky trialkylsilylacetylene-substituted aggregation-induced-emission-active 1,4-dihydropyridine derivatives. Dyes and Pigments, 2020, 174, 108094.	2.0	4
132	4-Amino-5-(2-ethoxyphenyl)-2,4-dihydro-2H-1,2,4-triazole-3-thione–triphenylphosphine oxide (1/1). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3191-o3191.	0.2	3
133	Morphology-controlled hollow nanospheres of functionalized dextran by self-assembly in aqueous solution. Carbohydrate Polymers, 2010, 82, 460-465.	5.1	3
134	Investigation of the effect of hapten heterology in the enzyme-linked immunosorbent assay for Sudan I. Food and Agricultural Immunology, 2015, 26, 13-25.	0.7	3
135	Cu(I)/KOHâ€Promoted Condensation between <i>o</i> â€Arylenediamines and Nitroarenes to Access 2â€Arylâ€2 <i>H</i> â€Benzotriazoles. Advanced Synthesis and Catalysis, 2020, 362, 2847-2851.	2.1	3
136	Fluorescence upconversion properties of a chiral polybinaphthyl induced by twoâ€photon absorption. Journal of Applied Polymer Science, 2012, 124, 2867-2870.	1.3	2
137	Synthesis of low-molecular-weight gel with tunable gel-sol transition temperature for thermo-sensitive drug controlled release. Journal of Molecular Structure, 2022, 1264, 133212.	1.8	2
138	Synthesis and Biological Activities of 2-Alkylthio-5-furylmethylidene-4H-imidazolin-4-ones ChemInform, 2004, 35, no.	0.1	1
139	6-(2-Chlorophenyl)-3-(4-ethoxyphenyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4418-o4419.	0.2	1
140	Synthesis of fluorinated β-carbolines by one-pot reaction. Journal of Chemical Research, 2008, 2008, 696-698.	0.6	1
141	3-Methylsulfanyl-5-phenyl-4H-1,2,4-triazol-4-amine–water (6/1). Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o676-o676.	0.2	1
142	Novel Synthetic Route to Fluorinated β-Carbolines by One-Pot Reaction ChemInform, 2005, 36, no.	0.1	0
143	(Z)-Ethyl 3-phenyl-2-[(triphenylphosphoranylidene)amino]prop-2-enoate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o280-o281.	0.2	0
144	(Z)-5-Benzylidene-3-phenethyl-2-thioxoimidazolidin-4-one. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o497-o499.	0.2	0

#	Article	IF	CITATIONS
145	(Z)-Ethyl 3-(4-methoxyphenyl)-2-[(triphenylphosphoranylidene)amino]prop-2-enoate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o1259-o1260.	0.2	Ο
146	(Z)-Ethyl 3-(4-chlorophenyl)-2-[(triphenylphosphoranylidene)amino]prop-2-enoate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o1261-o1262.	0.2	0
147	(Z)-Ethyl 3-(4-methylphenyl)-2-[(triphenylphosphoranylidene)amino]prop-2-enoate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2196-o2197.	0.2	Ο
148	3-(2-Ethoxyphenyl)-6-phenyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2233-o2234.	0.2	0
149	3-(2-Ethoxyphenyl)-5-methylsulfanyl-4H-1,2,4-triazol-4-amine monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o3461-o3462.	0.2	Ο
150	3-(2-Ethoxyphenyl)-6-(phenoxymethyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4416-o4417.	0.2	0
151	Effect of electron acceptor type on nonlinear optical absorption properties in the chiral polymers based on polybinaphthyls. Materials Chemistry and Physics, 2014, 145, 446-449.	2.0	Ο
152	The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3. Zeitschrift Fur Kristallographie - New Crystal Structures, 2022, .	0.1	0
153	The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C ₄₆ H ₆₀ N ₆ O ₂ Se ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures. 2022. 237. 239-242.	0.1	0
154	Direct dilithiation of N-aryl heterocycles for the construction of condensed N-heterocycles. Organic Chemistry Frontiers, 0, , .	2.3	0