Sandra Nunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4730046/publications.pdf

Version: 2024-02-01

394421 501196 39 838 19 28 citations h-index g-index papers 42 42 42 666 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites. Cement and Concrete Research, 2017, 97, 28-40.	11.0	147
2	Self-compacting concrete incorporating sugarcane bagasse ash. Construction and Building Materials, 2018, 172, 635-649.	7.2	89
3	A methodology to assess robustness of SCC mixtures. Cement and Concrete Research, 2006, 36, 2115-2122.	11.0	57
4	Mixture design of self-compacting glass mortar. Cement and Concrete Composites, 2013, 43, 1-11.	10.7	54
5	Combined effect of two sustainable technologies: Self-compacting concrete (SCC) and controlled permeability formwork (CPF). Construction and Building Materials, 2009, 23, 2518-2526.	7.2	37
6	Estimation of the tensile strength of UHPFRC layers based on non-destructive assessment of the fibre content and orientation. Cement and Concrete Composites, 2017, 83, 222-238.	10.7	33
7	A meso-mechanical model to simulate the tensile behaviour of ultra-high performance fibre-reinforced cementitious composites. Composite Structures, 2019, 222, 110911.	5.8	33
8	Durability Enhancement Of SCC With Waste Glass Powder. Materials Research, 2016, 19, 67-74.	1.3	31
9	Cork waste in cement based materials. Materials and Design, 2015, 85, 230-239.	7.0	30
10	Spent equilibrium catalyst as internal curing agent in UHPFRC. Cement and Concrete Composites, 2019, 104, 103362.	10.7	29
11	Numerical optimization of self-compacting mortar mixture containing spent equilibrium catalyst from oil refinery. Journal of Cleaner Production, 2017, 158, 109-121.	9.3	28
12	Quaternary blends of portland cement, metakaolin, biomass ash and granite powder for production of self-compacting concrete. Journal of Cleaner Production, 2020, 266, 121666.	9.3	28
13	Influence of shrinkage reducing admixtures on distinct SCC mix compositions. Construction and Building Materials, 2012, 35, 304-312.	7.2	27
14	Interaction diagrams to assess SCC mortars for different cement types. Construction and Building Materials, 2009, 23, 1401-1412.	7.2	26
15	Non-destructive assessment of fibre content and orientation in UHPFRC layers based on a magnetic method. Cement and Concrete Composites, 2016, 72, 66-79.	10.7	26
16	Design of self-compacting high-performance concrete: Study of mortar phase. Construction and Building Materials, 2018, 167, 617-630.	7.2	26
17	Rheological characterization of SCC mortars and pastes with changes induced by cement delivery. Cement and Concrete Composites, 2011, 33, 103-115.	10.7	24
18	Robust SCC Mixes through Mix Design. Journal of Materials in Civil Engineering, 2013, 25, 183-193.	2.9	21

#	Article	IF	CITATIONS
19	Linking fresh and durability properties of paste to SCC mortar. Cement and Concrete Composites, 2014, 45, 209-226.	10.7	19
20	Durability of an UHPFRC under mechanical and chloride loads. Construction and Building Materials, 2021, 311, 125223.	7.2	12
21	Durability of an UHPC containing spent equilibrium catalyst. Construction and Building Materials, 2021, 305, 124681.	7.2	10
22	Capillary Transport of Water in Cracked and Non-cracked UHPFRC Specimens. Journal of Advanced Concrete Technology, 2019, 17, 244-259.	1.8	7
23	Experimental investigation on punching shear behaviour of RC-(R)UHPFRC composite flat slabs without transverse reinforcement. Engineering Structures, 2022, 255, 113951.	5. 3	7
24	Shear behaviour of RC-UHPFRC composite beams without transverse reinforcement. Engineering Structures, 2022, 257, 114053.	5. 3	5
25	The Tectonics of Digitally Fabricated Concrete. A Case for Robotic Hot Wire Cutting. RILEM Bookseries, 2019, , 311-322.	0.4	4
26	The Effect of Fibre Orientation on the Uniaxial Tensile Response of UHPFRC: Experimental Evaluation and Analytical Modelling., 2018,, 173-181.		3
27	Self-compacting concrete also standing for sustainable circular concrete. , 2021, , 439-480.		2
28	SCC and conventional concrete on site: property assessment. Revista IBRACON De Estruturas E Materiais, 2009, 2, 25-36.	0.6	2
29	Determination of the Tensile Response of UHPFRC Layers Using a Non-Destructive Method for Assessing the Fiber Content and Orientation. , 0, , .		2
30	Modelling and Experimental Characterization of the Tensile Response of Ultra-High Performance Fibre-Reinforced Cementitious Composites. RILEM Bookseries, 2018, , 106-114.	0.4	2
31	Chloride Ion Penetration into Cracked UHPFRC During Wetting-drying Cycles. RILEM Bookseries, 2021, , 227-238.	0.4	1
32	Key Factors for Implementing Magnetic NDT Method on Thin UHPFRC Bridge Elements. Materials, 2021, 14, 4353.	2.9	1
33	Betão auto-compactável com incorporação de resÃduo de mármore. , 0, , .		1
34	Estudo do solo-cimento-autoadensável produzido com solos da região do Porto-PT. PARTE I: caracterização de propriedades mecânicas. REEC: Revista EletrA´nica De Engenharia Civil, 2014, 9, .	0.1	1
35	Determinação da resistência à tração de camadas de UHPFRC com base em ensaio não-destrutivo. , 0, , .		1
36	Multi-level study on UHPFRC incorporating ECat. Construction and Building Materials, 2022, 318, 125976.	7.2	1

#	Article	IF	CITATIONS
37	Rheology and mechanical aspects of a self-compacting soil-cement in the fresh state. Revista Materia, 2017, 22, .	0.2	O
38	Estudo do solo-cimento-autoadensável produzido com solos da região do Porto-PT. PARTE II: avaliação da resistência e desempenho mecânico por meio da medição da resistividade elétrica e velocidade de propagação de ondas de ultrassom REEC: Revista Eletrônica De Engenharia Civil, 2014, 9, .	0.1	0
39	Betão auto-compactável com resÃduo agroindustrial. , 0, , .		0