List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4730039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrode fabrication at liquid interfaces: Towards transparency and flexibility. Electrochemistry Communications, 2022, 134, 107183.	2.3	7
2	Model of inner-sphere adsorption of oxyanions in goethite - Why is phosphate adsorption more significant than that of sulfate?. Revista Brasileira De Ciencia Do Solo, 2022, 46, .	0.5	4
3	Neighboring Effects on the Selective Bifunctionalization of Graphene Oxide for Nanocatalytic Organophosphate Neutralization. ACS Applied Nano Materials, 2022, 5, 6001-6012.	2.4	5
4	Nickel hexacyanoferrate/graphene thin film: a candidate for the cathode in aqueous metal-ion batteries. New Journal of Chemistry, 2022, 46, 11118-11127.	1.4	4
5	Transparent aqueous rechargeable sodium-ion battery. Electrochimica Acta, 2022, 422, 140548.	2.6	10
6	The role of functionalization on the colloidal stability of aqueous fullerene C60 dispersions prepared with fullerides. Carbon, 2021, 173, 1041-1047.	5.4	10
7	Conductive ink based on PEDOT nanoparticles dispersed in water without organic solvents, passivant agents or metallic residues. Synthetic Metals, 2021, 272, 116657.	2.1	7
8	Liquid–liquid interfaces: a unique and advantageous environment to prepare and process thin films of complex materials. Materials Horizons, 2021, 8, 1409-1432.	6.4	35
9	The role of carbon nanotubes on the sensitivity of composites with polyaniline for ammonia sensors. Carbon Trends, 2021, 3, 100026.	1.4	9
10	Metal Cationâ€Modified Graphene Oxide as Precursor for Advanced Materials: Thin Films of Graphene/Prussian Blue Analogues. European Journal of Inorganic Chemistry, 2021, 2021, 3373-3384.	1.0	6
11	Molybdenum-based materials/carbon nanotubes nanocomposites prepared as thin and transparent films for aqueous K-ion batteries. Electrochimica Acta, 2021, 387, 138500.	2.6	12
12	SERS detection and comprehensive study of <i>p</i> -nitrophenol: towards pesticide sensing. New Journal of Chemistry, 2021, 45, 3886-3891.	1.4	6
13	Introduction to celebrating Latin American talent in chemistry. RSC Advances, 2021, 11, 40216-40219.	1.7	1
14	A black phosphorus-based cathode for aqueous Na-ion batteries operating under ambient conditions. Chemical Communications, 2020, 56, 802-805.	2.2	17
15	Magnetic nanocatalysts derived from carbon nanotubes functionalized with imidazole: towards pesticide degradation. Applied Catalysis B: Environmental, 2020, 264, 118496.	10.8	17
16	Conformational and Electron Dynamics Changes Induced by Cooling Treatment on GO:PEDOT:PSS Transparent Electrodes. Journal of Physical Chemistry C, 2020, 124, 26640-26647.	1.5	4
17	A simple enzymeless approach for Paraoxon determination using imidazole-functionalized carbon nanotubes. Materials Science and Engineering C, 2020, 116, 111140.	3.8	10
18	Flexible and ITO-free asymmetric energy storage devices based on graphene/Ni(OH)2 nanocomposites. Applied Surface Science, 2020, 528, 146944.	3.1	6

#	Article	IF	CITATIONS
19	Hydroxamic acid-functionalized graphene thin films as nanocatalysts towards organophosphate degradation. JPhys Materials, 2020, 3, 034003.	1.8	4
20	Graphene/copper oxide nanoparticles thin films as precursor for graphene/copper hexacyanoferrate nanocomposites. Applied Surface Science, 2020, 515, 146000.	3.1	19
21	Graphene Modified with Triruthenium Acetate Clusters as an Electrode for the Hybrid Energy Storage System. ACS Applied Nano Materials, 2020, 3, 6757-6765.	2.4	6
22	Chemically synthesized graphene as a precursor to Prussian blue-based nanocomposite: A multifunctional material for transparent aqueous K-ion battery or electrochromic device. Electrochimica Acta, 2020, 345, 136199.	2.6	30
23	High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. Electrochimica Acta, 2020, 349, 136243.	2.6	34
24	Molybdenum-based two-dimensional materials: Synthesis, dispersion, exfoliation and thin film deposition. Journal of Colloid and Interface Science, 2019, 554, 80-90.	5.0	12
25	Graphene oxide as a surfactant in the nanostructuring of a conduction polymer: Effect on the electronic structure, chain orientation, and charge transfer dynamics. Organic Electronics, 2019, 75, 105440.	1.4	6
26	Anchoring conductive polymeric monomers on single-walled carbon nanotubes: towards covalently linked nanocomposites. New Journal of Chemistry, 2019, 43, 10482-10490.	1.4	6
27	A new approach for the achievement of stable aqueous dispersions of carbon nanotubes. Chemical Communications, 2019, 55, 5809-5812.	2.2	11
28	A multi-technique approach towards the mechanistic investigation of the electrodeposition of Prussian blue over carbon nanotubes film. Electrochimica Acta, 2019, 312, 380-391.	2.6	23
29	Charting a course for chemistry. Nature Chemistry, 2019, 11, 286-294.	6.6	18
30	Facile synthesis and dopamine sensing application of three component nanocomposite thin films based on polythiophene, gold nanoparticles and carbon nanotubes. Journal of Electroanalytical Chemistry, 2019, 840, 208-217.	1.9	29
31	Nanostructures and Compatibility in Rubber Nanocomposites Containing Carbon Nanofillers. , 2019, , 1-26.		2
32	Enhancement of conductivity and transmittance of graphene oxide/PEDOT:PSS electrodes and the evaluation of charge transfer dynamics. Journal of Applied Physics, 2019, 126, .	1.1	15
33	Molecular orientation and femtosecond charge transfer dynamics in transparent and conductive electrodes based on graphene oxide and PEDOT:PSS composites. Physical Chemistry Chemical Physics, 2019, 21, 736-743.	1.3	15
34	ALGUMAS ESTRUTURAS DO CARBONO ELEMENTAR E SUA IMPORTÃ,NCIA PARA O DESENVOLVIMENTO E SOBERANIA DO BRASIL. Quimica Nova, 2019, , .	0.3	1
35	Nanoscience and Nanotechnology - A True Revolution in the Way of Thinking Nature. Brazilian Journal of Analytical Chemistry, 2019, 5, 12-13.	0.3	1
36	Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection. Biosensors and Bioelectronics, 2018, 112, 108-113.	5.3	69

#	Article	IF	CITATIONS
37	Targeted catalytic degradation of organophosphates: pursuing sensors. Pure and Applied Chemistry, 2018, 90, 1593-1603.	0.9	12
38	Direct and one-step synthesis of polythiophene/gold nanoparticles thin films through liquid/liquid interfacial polymerization. Journal of Colloid and Interface Science, 2018, 516, 498-510.	5.0	38
39	Highly Conducting, Sustainable, Nanographitic Rubber Composites. ACS Omega, 2018, 3, 1367-1373.	1.6	16
40	Photoanode for Aqueous Dyeâ€Sensitized Solar Cells based on a Novel Multicomponent Thin Film. ChemSusChem, 2018, 11, 1238-1245.	3.6	16
41	Carbon nanotube thin films modified with a mixture of Prussian blue and ruthenium purple: combining materials and properties. Journal of Solid State Electrochemistry, 2018, 22, 2003-2012.	1.2	7
42	Covalently linked nanocomposites of polypyrrole with graphene: Strategic design toward optimized properties. Journal of Polymer Science Part A, 2018, 56, 579-588.	2.5	12
43	Nickel hexacyanoferrate supported at nickel nanoparticles for voltammetric determination of rifampicin. Sensors and Actuators B: Chemical, 2018, 260, 816-823.	4.0	24
44	Nanocatalysts for hydrogen production from borohydride hydrolysis: graphene-derived thin films with Ag- and Ni-based nanoparticles. Journal of Materials Chemistry A, 2018, 6, 22226-22233.	5.2	27
45	Ultrafast interface charge transfer dynamics on P3HT/MWCNT nanocomposites probed by resonant Auger spectroscopy. RSC Advances, 2018, 8, 26416-26422.	1.7	12
46	Cation effect on the structure and properties of hexacyanometallates-based nanocomposites: Improving cathode performance in aqueous metal-ions batteries. Electrochimica Acta, 2018, 283, 1339-1350.	2.6	23
47	Facile room temperature synthesis of large graphene sheets from simple molecules. Chemical Science, 2018, 9, 7297-7303.	3.7	25
48	Electrostatic stabilization of multi-walled carbon nanotubes dispersed in nonaqueous media. Journal of Colloid and Interface Science, 2018, 529, 187-196.	5.0	11
49	Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sensors and Actuators B: Chemical, 2017, 245, 25-33.	4.0	136
50	Bottom-up synthesis of graphene/polyaniline nanocomposites for flexible and transparent energy storage devices. Journal of Power Sources, 2017, 348, 87-93.	4.0	43
51	Tailoring multifunctional graphene-based thin films: from nanocatalysts to SERS substrates. Journal of Materials Chemistry A, 2017, 5, 9591-9603.	5.2	27
52	Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Materials Science and Engineering C, 2017, 79, 262-269.	3.8	23
53	Conducting, transparent and flexible substrates obtained from interfacial thin films of double-walled carbon nanotubes. Journal of Colloid and Interface Science, 2017, 502, 146-152.	5.0	13
54	Electrical and morphological study of carbon nanotubes/polyaniline composite films: A model to explain different tunneling regimes induced by a vertical electric field. Thin Solid Films, 2017, 636, 314-324.	0.8	11

#	Article	IF	CITATIONS
55	Air stable black phosphorous in polyaniline-based nanocomposite. Scientific Reports, 2017, 7, 10165.	1.6	35
56	Adsorption of anti-inflammatory nimesulide by graphene materials: a combined theoretical and experimental study. Physical Chemistry Chemical Physics, 2017, 19, 22099-22110.	1.3	34
57	Imidazole-derived graphene nanocatalysts for organophosphate destruction: Powder and thin film heterogeneous reactions. Journal of Catalysis, 2017, 356, 75-84.	3.1	30
58	Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sensors and Actuators B: Chemical, 2017, 243, 43-50.	4.0	68
59	Multifunctional Nanocomposites of Natural Rubber Latex and Carbon Nanostructures. Revista Virtual De Quimica, 2017, 9, 73-96.	0.1	2
60	Non-Synergistic UV-A Photocatalytic Degradation of Estrogens by Nano-TiO2Supported on Activated Carbon. Journal of the Brazilian Chemical Society, 2016, , .	0.6	4
61	One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors. Scientific Reports, 2016, 6, 33806.	1.6	65
62	Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. Journal of Colloid and Interface Science, 2016, 478, 107-116.	5.0	68
63	Design of a Prussian Blue Analogue/Carbon Nanotube Thinâ€Film Nanocomposite: Tailored Precursor Preparation, Synthesis, Characterization, and Application. Chemistry - A European Journal, 2016, 22, 6643-6653.	1.7	27
64	Nickel nanoparticles with hcp structure: Preparation, deposition as thin films and application as electrochemical sensor. Journal of Colloid and Interface Science, 2016, 468, 34-41.	5.0	38
65	pKa determination of graphene-like materials: Validating chemical functionalization. Journal of Colloid and Interface Science, 2016, 467, 239-244.	5.0	73
66	Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 1526-1536.	1.3	158
67	Water based, solution-processable, transparent and flexible graphene oxide composite as electrodes in organic solar cell application. Journal Physics D: Applied Physics, 2016, 49, 105106.	1.3	33
68	Flexible, Transparent and Thin Films of Carbon Nanomaterials as Electrodes for Electrochemical Applications. Electrochimica Acta, 2016, 197, 200-209.	2.6	67
69	The total chemical synthesis of polymer/graphene nanocomposite films. Chemical Communications, 2016, 52, 1629-1632.	2.2	33
70	PHOTOCATALYTIC DEGRADATION OF DYE OVER GRAPHENE-TiO2NANOCOMPOSITE. Quimica Nova, 2016, , .	0.3	1
71	Graphene/nickel nanoparticles composites from graphenide solutions. Journal of Colloid and Interface Science, 2015, 453, 28-35.	5.0	15
72	Graphene chemically synthesized from benzene at liquid–liquid interfaces. Carbon, 2015, 93, 924-932.	5.4	27

#	Article	IF	CITATIONS
73	Carbon nanotube/polyaniline nanocomposites: Electronic structure, doping level and morphology investigations. Synthetic Metals, 2015, 203, 16-21.	2.1	32
74	Graphene nanoribbons inducing cube-shaped Ag nanoparticle assemblies. Carbon, 2015, 93, 800-811.	5.4	15
75	Thiol-capped gold nanoparticles: Influence of capping amount on electrochemical behavior and potential application as voltammetric sensor for diltiazem. Sensors and Actuators B: Chemical, 2015, 220, 673-678.	4.0	23
76	Annealing effect on donor-acceptor interface and its impact on the performance of organic photovoltaic devices based on PSiF-DBT copolymer and C60. Applied Physics Letters, 2015, 106, 133301.	1.5	12
77	Thin and transparent films of graphene/silver nanoparticles obtained at liquid–liquid interfaces: Preparation, characterization and application as SERS substrates. Journal of Colloid and Interface Science, 2015, 438, 29-38.	5.0	49
78	Multifunctional carbon nanotubes/ruthenium purple thin films: preparation, characterization and study of application as sensors and electrochromic materials. Dalton Transactions, 2015, 44, 5985-5995.	1.6	20
79	THE EFFECT OF VARIATION OF REACTIONAL PARAMETERS IN THE PREPARATION OF GRAPHENE BY OXIDATION AND REDUCTION OF GRAPHITE. Quimica Nova, 2014, , .	0.3	9
80	CARBON NANOTUBE/PLATINUM NANOPARTICLE NANOCOMPOSITES: PREPARATION, CHARACTERIZATION AND APPLICATION IN ELECTROOXIDATION OF ALCOHOLS. Quimica Nova, 2014, , .	0.3	0
81	Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid–liquid interfaces. Journal of Power Sources, 2014, 260, 34-42.	4.0	90
82	PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor. Sensors and Actuators B: Chemical, 2014, 196, 574-581.	4.0	55
83	Resistive switching in iron-oxide-filled carbon nanotubes. Nanoscale, 2014, 6, 378-384.	2.8	17
84	Carbon nanotube/Prussian blue paste electrodes: Characterization and study of key parameters for application as sensors for determination of low concentration of hydrogen peroxide. Sensors and Actuators B: Chemical, 2014, 192, 782-790.	4.0	55
85	Electrical Properties of Self-Assembled Films of Polyaniline/Carbon Nanotubes Composites. Journal of Physical Chemistry C, 2014, 118, 24811-24818.	1.5	29
86	Functionalized graphene oxide as a nanocatalyst in dephosphorylation reactions: pursuing artificial enzymes. Chemical Communications, 2014, 50, 9891-9894.	2.2	27
87	Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon, 2014, 78, 469-479.	5.4	101
88	Synthesis, characterization and morphology of reduced graphene oxide–metal–TCNQ nanocomposites. Journal of Materials Chemistry C, 2014, 2, 870-878.	2.7	45
89	Mechanistic Insights Gained by Monitoring Carbon Nanotube/Prussian Blue Nanocomposite Formation With in Situ Electrochemically Based Techniques. Journal of Physical Chemistry C, 2014, 118, 13157-13167. 	1.5	17
90	37ª. REUNIÃ ${ m f}$ O ANUAL DA SOCIEDADE BRASILEIRA DE QUÃMICA. Quimica Nova, 2014, , .	0.3	4

#	Article	IF	CITATIONS
91	Synthesis and Characterization of Carboxyl-Substituted Polyanilines Doped with Halogenated Acids: Combining Conductivity with Solubility. Journal of the Brazilian Chemical Society, 2014, , .	0.6	4
92	Carbon nanotube/Prussian blue nanocomposite film as a new electrode material for environmental treatment of water samples. RSC Advances, 2013, 3, 5393.	1.7	18
93	Reduction of graphene oxide films on Al foil for hybrid transparent conductive film applications. Carbon, 2013, 63, 454-459.	5.4	53
94	Electrochromic properties of carbon nanotubes/Prussian blue nanocomposite films. Solar Energy Materials and Solar Cells, 2013, 109, 40-46.	3.0	58
95	Interactions of iron-oxide filled carbon nanotubes with gas molecules. Physical Chemistry Chemical Physics, 2013, 15, 14340.	1.3	2
96	Lithium intercalation in nanostructured thin films of a mixed-valence layered vanadium oxide using an ionic liquid electrolyte. Journal of Power Sources, 2013, 224, 72-79.	4.0	11
97	Investigation of carbon nanotube/polyaniline nanocomposite thin films produced by interfacial polymerization through electron desorption. Journal of Molecular Structure, 2013, 1037, 93-98.	1.8	12
98	ITOâ€Free and Flexible Organic Photovoltaic Device Based on High Transparent and Conductive Polyaniline/Carbon Nanotube Thin Films. Advanced Functional Materials, 2013, 23, 1490-1499.	7.8	174
99	Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes. ACS Nano, 2013, 7, 1811-1816.	7.3	261
100	Tri-layer graphene films produced by mechanochemical exfoliation of graphite. Carbon, 2013, 57, 410-415.	5.4	46
101	Targeted thiolation of graphene oxide and its utilization as precursor for graphene/silver nanoparticles composites. Carbon, 2013, 61, 543-550.	5.4	75
102	Multivariate optimisation of TiO2/carbon nanocomposites for photocatalytic degradation of a reactive textile dye. Materials Research Bulletin, 2013, 48, 581-586.	2.7	13
103	36ª Reunião Anual da SBQ. Quimica Nova, 2013, 36, 621-621.	0.3	2
104	Nanoestruturas de carbono (nanotubos, grafeno): Quo Vadis?. Quimica Nova, 2013, 36, 1533-1539.	0.3	32
105	Tribute of the SBQ and the JBCS to Professor Fernando Galembeck on his 70th birthday. Journal of the Brazilian Chemical Society, 2013, 24, 177-177.	0.6	0
106	Transparent films from carbon nanotubes/Prussian blue nanocomposites: preparation, characterization, and application as electrochemical sensors. Journal of Materials Chemistry, 2012, 22, 1824-1833.	6.7	64
107	Graphene–Conducting Polymer Nanocomposites Prepared by Interfacial Polymerization. RSC Nanoscience and Nanotechnology, 2012, , 211-238.	0.2	0
108	Flow injection amperometric determination of isoniazid using a screen-printed carbon electrode modified with silver hexacyanoferrates nanoparticles. Sensors and Actuators B: Chemical, 2012, 171-172, 795-802.	4.0	60

#	Article	IF	CITATIONS
109	Resonant Raman spectroscopy and spectroelectrochemistry characterization of carbon nanotubes/polyaniline thin film obtained through interfacial polymerization. Journal of Raman Spectroscopy, 2012, 43, 1094-1100.	1.2	73
110	Self-assembled films of multi-wall carbon nanotubes used in gas sensors to increase the sensitivity limit for oxygen detection. Carbon, 2012, 50, 1953-1958.	5.4	51
111	Multifunctional materials based on iron/iron oxide-filled carbon nanotubes/natural rubber composites. Carbon, 2012, 50, 4685-4695.	5.4	31
112	Novel TiO2/C nanocomposites: Synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants. Journal of Colloid and Interface Science, 2012, 368, 121-127.	5.0	29
113	Electroanalytical application of a screen-printed electrode modified by dodecanethiol-stabilized platinum nanoparticles for dapsone determination. Electrochimica Acta, 2012, 66, 265-270.	2.6	23
114	Voltammetric Determination of the Antioxidant Capacity in Wine Samples Using a Carbon Nanotube Modified Electrode. Journal of Agricultural and Food Chemistry, 2011, 59, 7620-7625.	2.4	131
115	The effect of different chemical treatments on the structure and stability of aqueous dispersion of iron- and iron oxide-filled multi-walled carbon nanotubes. Journal of the Brazilian Chemical Society, 2011, 22, 2191-2201.	0.6	39
116	Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chemical Communications, 2011, 47, 2592-2594.	2.2	155
117	One-Pot Synthesis and Processing of Transparent, Conducting, and Freestanding Carbon Nanotubes/Polyaniline Composite Films. Chemistry of Materials, 2010, 22, 5222-5234.	3.2	215
118	Dodecanethiol-Stabilized Platinum Nanoparticles Obtained by a Two-Phase Method: Synthesis, Characterization, Mechanism of Formation, and Electrocatalytic Properties. Chemistry of Materials, 2010, 22, 360-370.	3.2	64
119	A Simple and Innovative Route to Prepare a Novel Carbon Nanotube/Prussian Blue Electrode and its Utilization as a Highly Sensitive H ₂ O ₂ Amperometric Sensor. Advanced Functional Materials, 2009, 19, 3980-3986.	7.8	160
120	Utilization of iron oxide film obtained by CVD process as catalyst to carbon nanotubes growth. Journal of Solid State Chemistry, 2009, 182, 2867-2872.	1.4	8
121	Photoabsorption and desorption studies on poly-3-hexylthiophene/multi-walled carbon nanotube composite films. Surface Science, 2009, 603, 647-652.	0.8	13
122	V2O5 nanoparticles obtained from a synthetic bariandite-like vanadium oxide: Synthesis, characterization and electrochemical behavior in an ionic liquid. Journal of Colloid and Interface Science, 2009, 337, 586-593.	5.0	63
123	Polyphosphate based electrochemical capacitors. Synthetic Metals, 2009, 159, 2309-2311.	2.1	1
124	The effect of process variables on the characteristics of carbon nanotubes obtained by spray pyrolysis. Journal of Nanoparticle Research, 2008, 10, 585-597.	0.8	7
125	Carbon paste electrodes made from novel carbonaceous materials: Preparation and electrochemical characterization. Electrochimica Acta, 2008, 54, 582-589.	2.6	26
126	Carbon Nanotubes Decorated with both Gold Nanoparticles and Polythiophene. Journal of Physical Chemistry C, 2008, 112, 18783-18786.	1.5	36

#	Article	IF	CITATIONS
127	Evaluation of porous silica glasses as insect pheromone dispensers. Journal of the Brazilian Chemical Society, 2008, 19, 1634-1640.	0.6	6
128	Synthesis of Fe/Ti oxides from a single source alkoxide precursor under inert atmosphere. Journal of the Brazilian Chemical Society, 2008, 19, 1501-1512.	0.6	12
129	Evidence of fractal structure for charge transport in carbon-nanotube/conjugated-polymer composites. Europhysics Letters, 2007, 79, 47011.	0.7	8
130	QuÃmica de (nano)materiais. Quimica Nova, 2007, 30, 1469-1479.	0.3	36
131	Iron- and iron oxide-filled multi-walled carbon nanotubes: Electrical properties and memory devices. Chemical Physics Letters, 2007, 444, 304-308.	1.2	41
132	Vanadium oxide nanostructures derived from a novel vanadium(IV) alkoxide precursor. Chemical Physics Letters, 2007, 445, 293-296.	1.2	13
133	Low coercive field and conducting nanocomposite formed by Fe3O4 and poly(thiophene). Journal of Solid State Chemistry, 2007, 180, 3545-3550.	1.4	26
134	Nickel nanoparticles obtained by a modified polyol process: Synthesis, characterization, and magnetic properties. Journal of Colloid and Interface Science, 2007, 311, 461-468.	5.0	220
135	Evidence of Verwey transition in iron- and iron oxide-encapsulated carbon nanotubes. Journal of Magnetism and Magnetic Materials, 2007, 312, 32-34.	1.0	7
136	Incorporation, Oxidation and Pyrolysis of Ferrocene into Porous Silica Glass:Â a Route to Different Silica/Carbon and Silica/Iron Oxide Nanocomposites. Inorganic Chemistry, 2006, 45, 10642-10650.	1.9	19
137	A Simple Two-Phase Route to Silver Nanoparticles/Polyaniline Structures. Journal of Physical Chemistry B, 2006, 110, 17063-17069.	1.2	99
138	Porous carbon obtained by the pyrolysis of TiO2/poly(furfuryl alcohol) nanocomposite: preparation, characterization and utilization for adsorption of reactive dyes from aqueous solution. Journal of the Brazilian Chemical Society, 2006, 17, 1151-1157.	0.6	21
139	Hollow porous carbon microspheres obtained by the pyrolysis of TiO2/poly(furfuryl alcohol) composite precursors. Carbon, 2006, 44, 2869-2876.	5.4	62
140	Carbon nanotubes based nanocomposites for photocurrent improvement. Applied Surface Science, 2006, 252, 5575-5578.	3.1	40
141	Sol–gel processing of a bimetallic alkoxide precursor confined in a porous glass matrix: A route to novel glass/metal oxide nanocomposites. Journal of Colloid and Interface Science, 2006, 299, 291-296.	5.0	10
142	Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science, 2005, 292, 429-435.	5.0	205
143	Um procedimento simples e barato para a construção de um equipamento "dip-coating" para deposição de filmes em laboratório. Quimica Nova, 2005, 28, 141-144. 	0.3	13
144	Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2444.	0.9	58

#	Article	IF	CITATIONS
145	Polypyrrole/polyphosphate organic–inorganic nanocomposites. Journal of Non-Crystalline Solids, 2005, 351, 3704-3708.	1.5	6
146	Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide. , 2005, , .		0
147	Nickel(II) and manganese(III) tetraazaannulenes complexes encapsulated in porous Vycor glass (PVG): investigation of catalytic activity. Journal of Molecular Catalysis A, 2004, 222, 213-222.	4.8	10
148	Novel flexible, freestanding and transparent organic/inorganic hybrid materials formed between polyaniline and polyphosphate gel. Synthetic Metals, 2004, 146, 57-62.	2.1	18
149	Organic/inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline. Journal of the Brazilian Chemical Society, 2004, 15, 378-384.	0.6	64
150	Single-source precursor and homometal approaches to the sol–gel synthesis of iron and titanium oxides. , 2004, , 221-226.		4
151	One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chemical Physics Letters, 2003, 381, 541-548.	1.2	107
152	Titanium and iron oxides produced by sol–gel processing of [FeCl{Ti2(OPri)9}]: structural, spectroscopic and morphological features. Materials Research Bulletin, 2003, 38, 1915-1928.	2.7	22
153	Template carbon dispersed in polyaniline matrix electrodes: evaluation and application as electrochemical sensors to low concentrations of Cu2+ and Pb2+. Electrochemistry Communications, 2003, 5, 983-988.	2.3	28
154	Preparation and Characterization of Novel Hybrid Materials Formed from (Ti,Sn)O2 Nanoparticles and Polyaniline. Chemistry of Materials, 2003, 15, 4658-4665.	3.2	194
155	(Ti,Sn)O2 Mixed Oxides Nanoparticles Obtained by the Solâ^'Gel Route. Chemistry of Materials, 2003, 15, 1903-1909.	3.2	79
156	QuÃmica de materiais em 25 anos de SBQ. Quimica Nova, 2002, 25, 75.	0.3	0
157	Immobilization of iron porphyrins into porous vycor glass: characterization and study of catalytic activity. Journal of Molecular Catalysis A, 2002, 185, 203-210.	4.8	48
158	Preparation, characterization and pyrolysis of poly(furfuryl alcohol)/porous silica glass nanocomposites: novel route to carbon template. Carbon, 2002, 40, 2413-2422.	5.4	62
159	Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid. Journal of the Brazilian Chemical Society, 2001, 12, 542-547.	0.6	17
160	Construction and evaluation of an optical pH sensor based on polyaniline–porous Vycor glass nanocomposite. Sensors and Actuators B: Chemical, 2001, 74, 157-162.	4.0	82
161	SÃntese de polÃmeros condutores em matrizes sólidas hospedeiras. Quimica Nova, 2000, 23, 204-215.	0.3	43
162	Polymerization of pyrrole between the layers of α-Tin (IV) Bis(hydrogenphosphate). Synthetic Metals, 2000, 114, 119-124.	2.1	50

#	Article	IF	CITATIONS
163	Thermal decomposition of [M3(CO)12] (M=Ru, Os) physisorbed onto porous Vycor glass: a route to a glass/RuO2 nanocomposite. Journal of Materials Chemistry, 1999, 9, 519-523.	6.7	14
164	Polyaniline intercalation in α-Sn(HPO4)2-H2O. Synthetic Metals, 1999, 102, 1277-1278.	2.1	15
165	Nanocomposites glass/conductive polymers. Synthetic Metals, 1999, 99, 227-235.	2.1	58
166	Silver Antimonates with Pyrochlore-like Structure Prepared by Thermal Treatment of Silver Proton-Exchanged Antimonic Acid:  Formation Process and Structural Characterization. Chemistry of Materials, 1999, 11, 1652-1658.	3.2	19
167	New polyaniline/porous glass composite. Synthetic Metals, 1997, 84, 107-108.	2.1	14
168	Glass-encapsulated molecular wires: A polypyrrole/porous glass composite. Advanced Materials, 1995, 7, 792-794.	11.1	19
169	A new route for the obtention of cadmium antimony oxide semiconducting ceramic powders. Journal of Materials Science Letters, 1994, 13, 607-608.	0.5	4
170	Pyrochlore-like compounds derived from antimonic acid. Journal of Materials Chemistry, 1994, 4, 389.	6.7	2
171	Multifunctional Nanocomposites between Different Carbon Nanostructures and Styrene Acrylic Latex. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
172	Electrodeposition of Prussian Blue/Carbon Nanotube Composites at a Liquid‑Liquid Interface. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
173	It is Necessary to React. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
174	It Is Necessary to Resist. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
175	A importância da Sociedade Brasileira de QuÃmica na pós-graduação em QuÃmica no Brasil. Quimica Nova, 0, , .	0.3	1
176	E chegamos aos quarenta. Quimica Nova, 0, , .	0.3	0
177	Sustainability & Diversity through Chemistry: Together, We Made that Happen. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
178	Evaluation of Carbon Nanotubes/Polyaniline Thin Films for Development of Electrochemical Sensors. Journal of the Brazilian Chemical Society, 0, , .	0.6	1