List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4729692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aerial (+)-borneol modulates root morphology, auxin signalling and meristematic activity in Arabidopsis roots. Biology Letters, 2022, 18, 20210629.	2.3	2
9	CRISPR/Cas9-mediated disruption of <i>ALLENE OXIDE SYNTHASE</i> results in defective 12-oxo-phytodienoic acid accumulation and reduced defense against spider mite (<i>Tetranychus) Tj ETQq0</i>	0.0 rgBT	Oyerlock 10
	39, 191-194.		
3	Fungal-Type Terpene Synthases in <i>Marchantia polymorpha</i> Are Involved in Sesquiterpene Biosynthesis in Oil Body Cells. Plant and Cell Physiology, 2021, 62, 528-537.	3.1	11
4	Production of raspberry ketone by redirecting the metabolic flux to the phenylpropanoid pathway in tobacco plants. Metabolic Engineering Communications, 2021, 13, e00180.	3.6	4

5	Green Leaf Volatile-Burst in Selaginella moellendorffii. Frontiers in Plant Science, 2021, 12, 731694.	3.6	2
6	Processing of Airborne Green Leaf Volatiles for Their Glycosylation in the Exposed Plants. Frontiers in Plant Science, 2021, 12, 721572.	3.6	7
7	1-Octen-3-ol is formed from its primeveroside after mechanical wounding of soybean leaves. Plant Molecular Biology, 2021, , 1.	3.9	8
8	Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand. PLoS ONE, 2020, 15, e0227478.	2.5	24
9	Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiologica, 2020, 65, 573-590.	2.3	28
10	Suppressed <i>Methionine γ-Lyase</i> Expression Causes Hyperaccumulation of <i>S</i> -Methylmethionine in Soybean Seeds. Plant Physiology, 2020, 183, 943-956.	4.8	5

11	Molecular cloning and characterization of UDP-glucose: Volatile benzenoid/phenylpropanoid glucosyltransferase in petunia flowers. Journal of Plant Physiology, 2020, 252, 153245.	3.5	8

Role of Volatiles from the Endophytic Fungus Trichoderma asperelloides PSU-P1 in Biocontrol Potential and in Promoting the Plant Growth of Arabidopsis thaliana. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Overlock 1047f 50 297

13	Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation. Journal of Fungi (Basel,) Tj ETQq1 1 0.78	431345rgBT	/O ¥e rlock 1
14	Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS ONE, 2019, 14, e0222187.	2.5	64
15	Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Applied Microbiology and Biotechnology, 2019, 103, 6973-6987.	3.6	24
16	11-Hydroperoxide eicosanoid-mediated 2(E),4(E)-decadienal production from arachidonic acid in the brown algae, Saccharina angustata. Journal of Applied Phycology, 2019, 31, 2719-2727.	2.8	5
17	Transcriptional regulators involved in responses to volatile organic compounds in plants. Journal of Biological Chemistry, 2019, 294, 2256-2266.	3.4	56
18	Molecular cloning and functional characterization of an O-methyltransferase catalyzing 4′-O-methylation of resveratrol in Acorus calamus. Journal of Bioscience and Bioengineering, 2019, 127, 539-543.	2.2	4

#	Article	IF	CITATIONS
19	Plants' strategy for survival with volatile compounds formed in leaves. Japanese Journal of Pesticide Science, 2019, 44, 132-140.	0.0	0
20	Preliminary study on bioethanol from fresh water algae, Cladophora glomerata (Sarai Kai) by the fungus, Monascus sp. NP1. Journal of Applied Phycology, 2018, 30, 137-141.	2.8	5
21	How Do Plants Emit and Take in Volatile Organic Chemicals?: Simple Diffusion Does not Illustrate the Mechanisms Kagaku To Seibutsu, 2018, 56, 95-103.	0.0	0
22	Green leaf volatile-burst in Arabidopsis is governed by galactolipid oxygenation by a lipoxygenase that is under control of calcium ion. Biochemical and Biophysical Research Communications, 2018, 505, 939-944.	2.1	9
23	Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae. Journal of Bioscience and Bioengineering, 2018, 126, 436-444.	2.2	13
24	1-Octen-3-ol Is Formed from Its Glycoside during Processing of Soybean [<i>Glycine max</i> (L.) Merr.] Seeds. Journal of Agricultural and Food Chemistry, 2018, 66, 7409-7416.	5.2	34
25	Use of Monascus sp. NP1 for bioethanol production from Cladophora glomerata. Journal of Applied Phycology, 2018, 30, 3327-3334.	2.8	3
26	Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles. Plant Physiology, 2018, 178, 552-564.	4.8	45
27	Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets. Scientific Reports, 2018, 8, 11942.	3.3	23
28	Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones. Scientific Reports, 2017, 7, 41508.	3.3	12
29	<i>n</i> -Hexanal and (<i>Z</i>)-3-hexenal are generated from arachidonic acid and linolenic acid by a lipoxygenase in <i>Marchantia polymorpha</i> L Bioscience, Biotechnology and Biochemistry, 2017, 81, 1148-1155.	1.3	20
30	Evaluation of Muscodor cinnamomi as an egg biofumigant for the reduction of microorganisms on eggshell surfaces and its effect on egg quality. International Journal of Food Microbiology, 2017, 244, 52-61.	4.7	25
31	Biosynthesis of volatile terpenes that accumulate in the secretory cavities of young leaves of Japanese pepper (<i>Zanthoxylum piperitum</i>): Isolation and functional characterization of monoterpene and sesquiterpene synthase genes. Plant Biotechnology, 2017, 34, 17-28.	1.0	12
32	Aromatic amino acid decarboxylase is involved in volatile phenylacetaldehyde production in loquat (<i>Eriobotrya japonica</i>) flowers. Plant Biotechnology, 2017, 34, 193-198.	1.0	3
33	Arabidopsis lipoxygenase 2 is essential for formation of green leaf volatiles and fiveâ€carbon volatiles. FEBS Letters, 2016, 590, 1017-1027.	2.8	63
34	Green Leaf Volatiles in Plant Signaling and Response. Sub-Cellular Biochemistry, 2016, 86, 427-443.	2.4	23
35	Uptake and Conversion of Volatile Compounds in Plant–Plant Communication. Signaling and Communication in Plants, 2016, , 305-316.	0.7	9
36	Characterization of an O-methyltransferase specific to guaiacol-type benzenoids from the flowers of loquat (Eriobotrya japonica). Journal of Bioscience and Bioengineering, 2016, 122, 679-684.	2.2	16

#	Article	IF	CITATIONS
37	Benzenoid biosynthesis in the flowers of Eriobotrya japonica: molecular cloning and functional characterization of p-methoxybenzoic acid carboxyl methyltransferase. Planta, 2016, 244, 725-736.	3.2	20
38	A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds. Current Opinion in Plant Biology, 2016, 32, 24-30.	7.1	51
39	CYP74B24 is the 13-hydroperoxide lyase involved in biosynthesis of green leaf volatiles in tea (Camellia) Tj ETQq1	10,7843 5.8	14 rgBT /O
40	Evaluation of <i>Muscodor suthepensis</i> strain <scp>CMU</scp> ib462 as a postharvest biofumigant for tangerine fruit rot caused by <i>Penicillium digitatum</i> . Journal of the Science of Food and Agriculture, 2016, 96, 339-345.	3.5	35
41	Glutathionylation and reduction of methacrolein in tomato plants account for its absorption from the vapor phase. Plant Physiology, 2015, 169, pp.01045.2015.	4.8	11
42	Conversion of volatile alcohols into their glucosides in Arabidopsis. Communicative and Integrative Biology, 2015, 8, e992731.	1.4	29
43	Spatial expression of the Arabidopsis <i>hydroperoxide lyase</i> gene is controlled differently from that of the <i>allene oxide synthase</i> gene. Journal of Plant Interactions, 2015, 10, 1-10.	2.1	21
44	Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta, 2015, 242, 1175-1186.	3.2	51
45	Volatile Glycosylation in Tea Plants: Sequential Glycosylations for the Biosynthesis of Aroma <i>β</i> -Primeverosides Are Catalyzed by Two <i>Camellia sinensis</i> Glycosyltransferases. Plant Physiology, 2015, 168, 464-477.	4.8	133
46	The importance of lipoxygenase control in the production of green leaf volatiles by lipase-dependent and independent pathways. Plant Biotechnology, 2014, 31, 445-452.	1.0	18
47	Formation of 1-octen-3-ol from <i>Aspergillus flavus</i> conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. PeerJ, 2014, 2, e395.	2.0	24
48	Intake and transformation to a glycoside of (<i>Z</i>)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7144-7149.	7.1	175
49	Arachidonic acid-dependent carbon-eight volatile synthesis from wounded liverwort (Marchantia) Tj ETQq1 1 0.78	34314 rgB 2.9	T Qverlock
50	Dimethyl Sulfide as a Source of the Seaweed-like Aroma in Cooked Soybeans and Correlation with Its Precursor, <i>S</i> -Methylmethionine (Vitamin U). Journal of Agricultural and Food Chemistry, 2014, 62, 8289-8294.	5.2	11
51	Maintenance of Chloroplast Structure and Function by Overexpression of the Rice <i>MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE</i> Gene Leads to Enhanced Salt Tolerance in Tobacco Â. Plant Physiology, 2014, 165, 1144-1155.	4.8	82
52	Acrolein is formed from trienoic fatty acids in chloroplast: A targeted metabolomics approach. Plant Biotechnology, 2014, 31, 535-543.	1.0	23
53	CytosolicLOXoverexpression inArabidopsisenhances the attractiveness of parasitic wasps in response to herbivory and incidences of parasitism. Journal of Plant Interactions, 2013, 8, 207-215.	2.1	4
54	E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Frontiers in Plant Science, 2013, 4, 74.	3.6	45

IF

CITATIONS

55	Traumatin- and Dinortraumatin-containing Galactolipids in Arabidopsis. Journal of Biological Chemistry, 2013, 288, 26078-26088.	3.4	40
56	Induced defence in lima bean plants exposed to the volatiles from two-spotted spider mite-infested conspecifics is independent of the major protein expression. Journal of Plant Interactions, 2013, 8, 219-224.	2.1	2
57	Intermittent exposure to traces of green leaf volatiles triggers the production of (<i>Z</i>)-3-hexen-1-yl acetate and (<i>Z</i>)-3-hexen-1-ol in exposed plants. Plant Signaling and Behavior, 2013, 8, e27013.	2.4	6
58	Differential Metabolisms of Green Leaf Volatiles in Injured and Intact Parts of a Wounded Leaf Meet Distinct Ecophysiological Requirements. PLoS ONE, 2012, 7, e36433.	2.5	135
59	Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Science, 2012, 196, 93-100.	3.6	104
60	Engineering the biosynthesis of low molecular weight metabolites for quality traits (essential) Tj ETQq0 0 0 rgBT	/Overlock	10 Jf 50 54
61	Intermittent exposure to traces of green leaf volatiles triggers a plant response. Scientific Reports, 2012, 2, 378.	3.3	42
62	Monogalactosyl diacylglycerol is a substrate for lipoxygenase: its implications for oxylipin formation directly from lipids. Journal of Plant Interactions, 2011, 6, 93-97.	2.1	18
63	Effects of Anaerobic Processing of Soybean Seeds on the Properties of Tofu. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1174-1176.	1.3	6
64	Oxylipin-specific cytochrome P450s (CYP74s) inLotus japonicus: their implications in response to mechanical wounding and nodule formation. Journal of Plant Interactions, 2011, 6, 255-264.	2.1	6
65	Characterization of the promoter sequence of chitinase gene from lima bean plant. Journal of Plant Interactions, 2011, 6, 163-164.	2.1	4
66	Establishment of an efficient screening system to isolate rice mutants deficient in green leaf volatile formation. Journal of Plant Interactions, 2011, 6, 185-186.	2.1	3
67	Development of a Screening System for the Evaluation of Soybean Volatiles. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1844-1848.	1.3	5
68	Characterization of Volatile Compounds in <i>Astraeus</i> spp Bioscience, Biotechnology and Biochemistry, 2009, 73, 2742-2745.	1.3	13
69	Chemical and Molecular Ecology of Herbivore-Induced Plant Volatiles: Proximate Factors and Their Ultimate Functions. Plant and Cell Physiology, 2009, 50, 911-923.	3.1	471
70	Volatile Oxylipins and Related Compounds Formed Under Stress in Plants. , 2009, 580, 17-28.		19
71	Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry, 2008, 69, 2127-2132.	2.9	105
72	Identification of an Allele Attributable to Formation of Cucumber-like Flavor in Wild Tomato Species (Solanum pennellii) That Was Inactivated during Domestication. Journal of Agricultural and Food Chemistry, 2007, 55, 4080-4086.	5.2	10

ARTICLE

#

#	Article	IF	CITATIONS
73	Cloning of Lipoxygenase Genes from a Cyanobacterium, Nostoc punctiforme, and Its Expression in Eschelichia coli. Current Microbiology, 2007, 54, 315-319.	2.2	40
74	Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. Journal of General Plant Pathology, 2007, 73, 35-37.	1.0	135
75	Oxylipin Metabolism in Soybean Seeds Containing Different Sets of Lipoxygenase Isozymes after Homogenization. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2598-2603.	1.3	12
76	Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Science, 2006, 170, 715-723.	3.6	71
77	ETR1-, JAR1- and PAD2-dependent signaling pathways are involved in C6-aldehyde-induced defense responses of Arabidopsis. Plant Science, 2006, 171, 415-423.	3.6	40
78	Analysis of defensive responses activated by volatile allo-ocimene treatment in Arabidopsis thaliana. Phytochemistry, 2006, 67, 1520-1529.	2.9	76
79	Role of the Lipoxygenase/lyase Pathway of Host-food Plants in the Host Searching Behavior of Two Parasitoid Species, Cotesia glomerata and Cotesia plutellae. Journal of Chemical Ecology, 2006, 32, 969-979.	1.8	69
80	Formation of Aldehyde Flavor (n-hexanal, 3Z-nonenal and 2E-nonenal) in the Brown Alga, Laminaria Angustata. Journal of Applied Phycology, 2006, 18, 409-412.	2.8	24
81	Antimicrobial Browning-Inhibitory Effect of Flavor Compounds in Seaweeds. Journal of Applied Phycology, 2006, 18, 413-422.	2.8	36
82	Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber. Phytochemistry, 2006, 67, 649-657.	2.9	76
83	Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 2006, 9, 274-280.	7.1	604
84	Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16672-16676.	7.1	259
85	Volatile C6-aldehydes and Allo-ocimene Activate Defense Genes and Induce Resistance against Botrytis cinerea in Arabidopsis thaliana. Plant and Cell Physiology, 2005, 46, 1093-1102.	3.1	232
86	Stereochemical Correlation between 10-Hydroperoxyoctadecadienoic Acid and 1-Octen-3-ol inLentinula edodesandTricholoma matsutakeMushrooms. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1539-1544.	1.3	25
87	Rice fatty acid -dioxygenase is induced by pathogen attack and heavy metal stress: activation through jasmonate signaling. Journal of Plant Physiology, 2005, 162, 912-920.	3.5	46
88	A tomatolipase homologous to DAD1(LeLID1) is induced in post-germinative growing stage and encodes a triacylglycerol lipase. FEBS Letters, 2004, 569, 195-200.	2.8	39
89	Kinetics of barley FA hydroperoxide lyase are modulated by salts and detergents. Lipids, 2003, 38, 1167-1172.	1.7	19
90	Hydroperoxy-arachidonic acid mediated n-hexanal and (Z)-3- and (E)-2-nonenal formation in Laminaria angustata. Phytochemistry, 2003, 63, 669-678.	2.9	49

#	Article	IF	CITATIONS
91	On the specificity of lipid hydroperoxide fragmentation by fatty acid hydroperoxide lyase from Arabidopsis thaliana. Journal of Plant Physiology, 2003, 160, 803-809.	3.5	20
92	Linoleic Acid 10-Hydroperoxide as an Intermediate during Formation of 1-Octen-3-ol from Linoleic Acid inLentinus decadetes. Bioscience, Biotechnology and Biochemistry, 2003, 67, 2280-2282.	1.3	46
93	Catalytic Properties of Rice α-Oxygenase. Journal of Biological Chemistry, 2002, 277, 22648-22655.	3.4	51
94	The NADPH:Quinone Oxidoreductase P1-ζ-crystallin in Arabidopsis Catalyzes the α,β-Hydrogenation of 2-Alkenals: Detoxication of the Lipid Peroxide-Derived Reactive Aldehydes. Plant and Cell Physiology, 2002, 43, 1445-1455.	3.1	134
95	Alpha-oxidation in marine algae. Fisheries Science, 2002, 68, 1383-1385.	1.6	0
96	Effect of Overexpression of Fatty Acid 9-Hydroperoxide Lyase in Tomatoes (Lycopersicon) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 542 Td
97	The Homolytic and Heterolytic Fatty Acid Hydroperoxide Lyase-like Activities of Hematin. Biochemical and Biophysical Research Communications, 2001, 286, 28-32.	2.1	11
98	Fatty Acid Oxidizing Activity in a Red Marine Alga, Porphyra sp Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2000, 55, 903-909.	1.4	3
99	Fatty Acid Hydroperoxide Lyase in Tomato Fruits: Cloning and Properties of a Recombinant Enzyme Expressed inEscherichia coli. Bioscience, Biotechnology and Biochemistry, 2000, 64, 1189-1196.	1.3	49
100	Fatty acid 9- and 13-hydroperoxide lyases from cucumber1. FEBS Letters, 2000, 481, 183-188.	2.8	104
101	Chemo-Enzymatic Syntheses of Both Enantiomers of Neodictyoprolenol and Neodictyoprolene; Possible Biosynthetic Intermediates of Sex Pheromones in Brown Algae. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1999, 54, 1027-1032.	1.4	4
102	Cucumber Cotyledon Lipoxygenase during Postgerminative Growth. Its Expression and Action on Lipid Bodies. Plant Physiology, 1999, 119, 1279-1288.	4.8	43
103	Changes of Lipoxygenase and Fatty Acid Hydroperoxide Lyase Activities in Bell Pepper Fruits during Maturation. Bioscience, Biotechnology and Biochemistry, 1997, 61, 199-201.	1.3	29
104	Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B). FEBS Letters, 1996, 394, 21-24.	2.8	117
105	Biogeneration of Volatile Compounds via Oxylipins in Edible Seaweeds. ACS Symposium Series, 1996, , 146-166.	0.5	17
106	Developmental changes of lipoxygenase and fatty acid hydroperoxide lyase activities in cultured cells of Marchantia polymorpha. Phytochemistry, 1996, 41, 177-182.	2.9	16
107	Chemical Structure-Odor Correlation in Series of Synthetic Methylene Interrupted n-Nonadien-1-ols. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1996, 51, 841-848.	1.4	2
108	Effect of Modification of Arginine Residues on the Activity of Soybean Lipoxygenase-1. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1995, 50, 37-44.	1.4	4

#	Article	IF	CITATIONS
109	Chemical Structure-Odor Correlation in a Series of Synthetic n-Nonen-1-ols. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1995, 50, 757-765.	1.4	4
110	The Biogeneration of Green Odour by Green Leaves and It's Physiological Functions -Past, Present and Future. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1995, 50, 467-472.	1.4	40
111	5,6-Epoxidation of All- <i>trans</i> -retinoic Acid with Soybean Lipoxygenase-2 and -3. Bioscience, Biotechnology and Biochemistry, 1994, 58, 140-145.	1.3	5
112	Inactivation of tea leaf hydroperoxide lyase by fatty acid hydroperoxide. Journal of Agricultural and Food Chemistry, 1992, 40, 175-178.	5.2	28
113	Substrate Specificity of Tea Leaf Hydroperoxide Lyase. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1992, 47, 677-679.	1.4	9
114	Expression of Lipoxygenase and Hydroperoxide Lyase Activities in Tomato Fruits. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1992, 47, 369-374.	1.4	20
115	Comparison of the Substrate Specificities of Lipoxygenases Purified from Soybean Seed, Wheat Seed, and Cucumber Cotyledons. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1992, 47, 85-89.	1.4	11
116	Fatty acid hydroperoxide cleaving enzyme, hydroperoxide lyase, from tea leaves. Phytochemistry, 1991, 30, 2109-2113.	2.9	75
117	Studies on the Substrate Specificity of Soybean Lipoxygenase-1 Using an Entire Series of (ω3 Z,ω6 Z ,ω9) Tj Biosciences, 1990, 45, 1161-1164.	ETQq1 1 1.4	0.784314 rg 4
118	Non-Enzymatic Isomerization of 12-Hydroxy-(3Z)-dodecenal to the (2JE)-Isomer after Enzymatic Cleavage of 13-Hydroperoxylinoleyl Alcohol in Tea Chloroplasts. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1989, 44, 161-164.	1.4	9
119	Notes: Separation of 13-and 9-Hydroperoxide Lyase Activities in Cotyledons of Cucumber Seedlings. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1989, 44, 883-885.	1.4	27