Fien Degryse

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4729585/fien-degryse-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88	3,255	34	55
papers	citations	h-index	g-index
92	3,732 ext. citations	5.1	5.39
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
88	Mechanochemical Synthesis of Zinc Borate for Use as a Dual-Release B Fertilizer. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 15995-16004	8.3	O
87	Layered Double Hydroxides as Slow-Release Fertilizer Compounds for the Micronutrient Molybdenum. <i>Journal of Agricultural and Food Chemistry</i> , 2021 , 69, 14501-14511	5.7	О
86	Using Se-Labelled Foliar Fertilisers to Determine How Se Transfers Within Wheat Over Time. <i>Frontiers in Nutrition</i> , 2021 , 8, 732409	6.2	
85	Long-term fate of fertilizer sulfate- and elemental S in co-granulated fertilizers. <i>Nutrient Cycling in Agroecosystems</i> , 2021 , 120, 31-48	3.3	О
84	Screening fertilizers for their phosphorus runoff risk using laboratory methods. <i>Journal of Environmental Quality</i> , 2021 , 50, 955-966	3.4	
83	Application method influences the oxidation rate of biologically and chemically produced elemental sulfur fertilizers. <i>Soil Science Society of America Journal</i> , 2021 , 85, 746-759	2.5	0
82	Effect of soil properties on time-dependent fixation (ageing) of selenate. <i>Geoderma</i> , 2021 , 383, 114741	6.7	3
81	Development and Testing of Improved Efficiency Boron-Enriched Diammonium Phosphate Fertilizers. <i>Journal of Soil Science and Plant Nutrition</i> , 2021 , 21, 1134-1143	3.2	1
80	Efficiency of soil-applied 67Zn-enriched fertiliser across three consecutive crops. <i>Pedosphere</i> , 2021 , 31, 531-537	5	4
79	Isotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. <i>BMC Plant Biology</i> , 2021 , 21, 437	5.3	0
78	Engineered Phosphate Fertilizers with Dual-Release Properties. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 5512-5524	3.9	7
77	Comparison and modelling of extraction methods to assess agronomic effectiveness of fertilizer zinc. <i>Journal of Plant Nutrition and Soil Science</i> , 2020 , 183, 248-259	2.3	1
76	Sulfur Uptake from Fertilizer Fortified with Sulfate and Elemental S in Three Contrasting Climatic Zones. <i>Agronomy</i> , 2020 , 10, 1035	3.6	3
75	A column perfusion test to assess the kinetics of nutrient release by soluble, sparingly soluble and coated granular fertilizers. <i>Journal of Plant Nutrition and Soil Science</i> , 2019 , 182, 763-771	2.3	7
74	Improving the efficacy of selenium fertilizers for wheat biofortification. Scientific Reports, 2019, 9, 1952	20 4.9	27
73	Aluminum-Activated Malate Transporters Can Facilitate GABA Transport. Plant Cell, 2018, 30, 1147-116	411.6	45
7 2	Model-based rationalization of sulphur mineralization in soils using 35S isotope dilution. <i>Soil Biology and Biochemistry</i> , 2018 , 120, 1-11	7.5	7

(2015-2018)

71	Uptake of elemental or sulfate-S from fall- or spring-applied co-granulated fertilizer by corn stable isotope and modeling study. <i>Field Crops Research</i> , 2018 , 221, 322-332	5.5	15
70	Limited Dissolved Phosphorus Runoff Losses from Layered Double Hydroxide and Struvite Fertilizers in a Rainfall Simulation Study. <i>Journal of Environmental Quality</i> , 2018 , 47, 371-377	3.4	22
69	Rapid and Low-Cost Method for Evaluation of Nutrient Release from Controlled-Release Fertilizers Using Electrical Conductivity. <i>Journal of Polymers and the Environment</i> , 2018 , 26, 4388-4395	4.5	7
68	Slow and Fast-Release Boron Sources in Potash Fertilizers: Spatial Variability, Nutrient Dissolution and Plant Uptake. <i>Soil Science Society of America Journal</i> , 2018 , 82, 1437-1448	2.5	10
67	Effects of pH and ionic strength on elemental sulphur oxidation in soil. <i>Biology and Fertility of Soils</i> , 2017 , 53, 247-256	6.1	9
66	Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 1108-1115	5.7	13
65	Abundance and diversity of sulphur-oxidising bacteria and their role in oxidising elemental sulphur in cropping soils. <i>Biology and Fertility of Soils</i> , 2017 , 53, 159-169	6.1	19
64	Agronomic Effectiveness of Granulated and Powdered P-Exchanged Mg-Al LDH Relative to Struvite and MAP. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 6736-6744	5.7	36
63	Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 43325-43335	9.5	66
62	Dissolution rate and agronomic effectiveness of struvite fertilizers Leffect of soil pH, granulation and base excess. <i>Plant and Soil</i> , 2017 , 410, 139-152	4.2	83
61	Availability of fertiliser sulphate and elemental sulphur to canola in two consecutive crops. <i>Plant and Soil</i> , 2016 , 398, 313-325	4.2	20
60	Oxidation of Elemental Sulfur in Granular Fertilizers Depends on the Soil-Exposed Surface Area. <i>Soil Science Society of America Journal</i> , 2016 , 80, 294-305	2.5	24
59	Low Effective Surface Area Explains Slow Oxidation of Co-Granulated Elemental Sulfur. <i>Soil Science Society of America Journal</i> , 2016 , 80, 911-918	2.5	2
58	Effect of Cogranulation on Oxidation of Elemental Sulfur: Theoretical Model and Experimental Validation. <i>Soil Science Society of America Journal</i> , 2016 , 80, 1244-1253	2.5	6
57	Agronomic Effectiveness of Zinc Sources as Micronutrient Fertilizer. <i>Advances in Agronomy</i> , 2016 , 139, 215-267	7.7	49
56	Natural colloidal P and its contribution to plant P uptake. <i>Environmental Science & Environmental Sci</i>	10.3	34
55	Boron phosphates (BPO4) as a seedling-safe boron fertilizer source. <i>Plant and Soil</i> , 2015 , 391, 153-160	4.2	8
54	Diffusion and solubility control of fertilizer-applied zinc: chemical assessment and visualization. <i>Plant and Soil</i> , 2015 , 386, 195-204	4.2	11

53	Responses of Canola to the Application of Slow-Release Boron Fertilizers and Their Residual Effect. Soil Science Society of America Journal, 2015 , 79, 97-103	2.5	9
52	Elemental Sulfur Oxidation in Australian Cropping Soils. <i>Soil Science Society of America Journal</i> , 2015 , 79, 89-96	2.5	31
51	Agronomic Effectiveness of Granular and Fluid Phosphorus Fertilizers in Andisols and Oxisols. <i>Soil Science Society of America Journal</i> , 2015 , 79, 577-584	2.5	10
50	Efficacy of Hydroxyapatite Nanoparticles as Phosphorus Fertilizer in Andisols and Oxisols. <i>Soil Science Society of America Journal</i> , 2015 , 79, 551-558	2.5	79
49	Slow-release boron fertilisers: co-granulation of boron sources with mono-ammonium phosphate (MAP). <i>Soil Research</i> , 2015 , 53, 505	1.8	8
48	Copper isotope fractionation during equilibration with natural and synthetic ligands. <i>Environmental Science & Environmental &</i>	10.3	54
47	Fluid Fertilizers Improve Phosphorus Diffusion but not Lability in Andisols and Oxisols. <i>Soil Science Society of America Journal</i> , 2014 , 78, 214-224	2.5	20
46	Phosphorus Diffusion from Fertilizer: Visualization, Chemical Measurements, and Modeling. <i>Soil Science Society of America Journal</i> , 2014 , 78, 832-842	2.5	28
45	Formulation, synthesis and characterization of boron phosphate (BPO4) compounds as raw materials to develop slow-release boron fertilizers. <i>Journal of Plant Nutrition and Soil Science</i> , 2014 , 177, 860-868	2.3	16
44	Isotopic fractionation of Zn in tomato plants suggests the role of root exudates on Zn uptake. <i>Plant and Soil</i> , 2013 , 370, 605-613	4.2	34
43	Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. <i>New Phytologist</i> , 2013 , 199, 367-378	9.8	110
42	A stable-isotope methodology for measurement of soil-applied zinc-fertilizer recovery in durum wheat (Triticum durum). <i>Journal of Plant Nutrition and Soil Science</i> , 2013 , 176, 756-763	2.3	8
41	Sequestration of Phosphorus-Binding Cations by Complexing Compounds is not a Viable Mechanism to Increase Phosphorus Efficiency. <i>Soil Science Society of America Journal</i> , 2013 , 77, 2050-20	5 9 ⁵	22
40	Labile complexes facilitate cadmium uptake by Caco-2 cells. <i>Science of the Total Environment</i> , 2012 , 426, 90-9	10.2	10
39	First observation of diffusion-limited plant root phosphorus uptake from nutrient solution. <i>Plant, Cell and Environment,</i> 2012 , 35, 1558-66	8.4	29
38	The performance of DGT versus conventional soil phosphorus tests in tropical soils - An isotope dilution study. <i>Plant and Soil</i> , 2012 , 359, 267-279	4.2	53
37	Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the Michaelis constant. <i>Plant Physiology</i> , 2012 , 160, 1097-109	6.6	57
36	Manganese Toxicity in Barley is Controlled by Solution Manganese and Soil Manganese Speciation. <i>Soil Science Society of America Journal</i> , 2012 , 76, 399-407	2.5	24

(2007-2012)

35	Cadmium and nickel uptake by tomato and spinach seedlings: plant or transport control?. <i>Environmental Chemistry</i> , 2012 , 9, 48	3.2	20
34	Effect of organic P forms and P present in inorganic colloids on the determination of dissolved P in environmental samples by the diffusive gradient in thin films technique, ion chromatography, and colorimetry. <i>Analytical Chemistry</i> , 2011 , 83, 5317-23	7.8	54
33	Characterization of zinc in contaminated soils: complementary insights from isotopic exchange, batch extractions and XAFS spectroscopy. <i>European Journal of Soil Science</i> , 2011 , 62, 318-330	3.4	38
32	Mechanisms of enhanced mobilisation of trace metals by anionic surfactants in soil. <i>Environmental Pollution</i> , 2011 , 159, 809-16	9.3	25
31	Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. <i>Environmental Science & Environmental Sci</i>	10.3	140
30	Uptake of Metals from Soil into Vegetables 2011 , 325-367		31
29	Mobilization of Zn upon waterlogging riparian Spodosols is related to reductive dissolution of Fe minerals. <i>European Journal of Soil Science</i> , 2010 , 61, 1014-1024	3.4	16
28	Zinc speciation in mining and smelter contaminated overbank sediments by EXAFS spectroscopy. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 3707-3720	5.5	41
27	The dissociation kinetics of Cu-dissolved organic matter complexes from soil and soil amendments. <i>Analytica Chimica Acta</i> , 2010 , 670, 24-32	6.6	20
26	DGT-measured fluxes explain the chloride-enhanced cadmium uptake by plants at low but not at high Cd supply. <i>Plant and Soil</i> , 2009 , 318, 127-135	4.2	28
25	Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications (a review. <i>European Journal of Soil Science</i> , 2009 , 60, 590-612	3.4	258
24	Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling. <i>Environmental Chemistry</i> , 2009 , 6, 198	3.2	185
23	Modelling the effects of ageing on Cd, Zn, Ni and Cu solubility in soils using an assemblage model. <i>European Journal of Soil Science</i> , 2008 , 59, 1160-1170	3.4	47
22	The UV-absorbance of dissolved organic matter predicts the fivefold variation in its affinity for mobilizing Cu in an agricultural soil horizon. <i>European Journal of Soil Science</i> , 2008 , 59, 1087-1095	3.4	70
21	Solubility and toxicity of antimony trioxide (Sb2O3) in soil. <i>Environmental Science & Environmental S</i>	10.3	103
20	Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil. <i>Plant and Soil</i> , 2008 , 306, 69-84	4.2	54
19	The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures. <i>Environmental Science & Environmental Science & Environme</i>	10.3	81
18	Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. <i>Environmental Science & amp; Technology</i> , 2007 , 41, 2992-7	10.3	64

17	Critical loads of metals and other trace elements to terrestrial environments. <i>Environmental Science & Environmental Science</i> & Environmental Science	10.3	34
16	Labile lead in polluted soils measured by stable isotope dilution. <i>European Journal of Soil Science</i> , 2007 , 58, 1-7	3.4	42
15	Mobilization of Cd upon acidification of agricultural soils: column study and field modelling. <i>European Journal of Soil Science</i> , 2007 , 58, 152-165	3.4	13
14	Labile Cd complexes increase Cd availability to plants. <i>Environmental Science & Environmental Science</i>	10.3	138
13	Mobility of Cd and Zn in polluted and unpolluted Spodosols. <i>European Journal of Soil Science</i> , 2006 , 57, 122-133	3.4	35
12	Speciation of nickel in surface waters measured with the Donnan membrane technique. <i>Analytica Chimica Acta</i> , 2006 , 578, 195-202	6.6	47
11	Model studies of corrosion-induced copper runoff fate in soil. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 683-91	3.8	12
10	Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. <i>Plant and Soil</i> , 2006 , 289, 171-185	4.2	83
9	Fixation of Cadmium and Zinc in Soils 2006 , 157-172		
8	An Agar Gel Technique Demonstrates Diffusion Limitations to Cadmium Uptake by Higher Plants. <i>Environmental Chemistry</i> , 2006 , 3, 419	3.2	18
7	Enhanced sorption and fixation of radiocaesium in soils amended with K-bentonites, submitted to wetting drying cycles. <i>European Journal of Soil Science</i> , 2004 , 55, 513-522	3.4	24
6	Radio-labile cadmium and zinc in soils as affected by pH and source of contamination. <i>European Journal of Soil Science</i> , 2004 , 55, 113-122	3.4	64
5	An anion resin membrane technique to overcome detection limits of isotopically exchanged P in P-sorbing soils. <i>European Journal of Soil Science</i> , 2004 , 55, 63-69	3.4	26
4	Soil solution concentration of Cd and Zn canbe predicted with a CaCl2 soil extract. <i>European Journal of Soil Science</i> , 2003 , 54, 149-158	3.4	86
3	Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	52
2	Fate and effect of zinc from tire debris in soil. Environmental Science & Eamp; Technology, 2002, 36, 3706-	1 0 0.3	158
1	DGT and Bioavailability216-262		3