Thomas Scholten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4729566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmentalAcovariates. Catena, 2022, 208, 105723.	5.0	82
2	Spatial variability of soil quality within management zones: Homogeneity and purity of delineated zones. Catena, 2022, 209, 105835.	5.0	12
3	Environmental Drivers of Species Composition and Tree Species Density of a Near-Natural Central Himalayan Treeline Ecotone: Consequences for the Response to Climate Change. Sustainable Development Goals Series, 2022, , 349-370.	0.4	5
4	The potential of using satellite-related precipitation data sources in arid regions. , 2022, , 201-237.		1
5	A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties. Remote Sensing, 2022, 14, 472.	4.0	18
6	Calibration of Near-Infrared Spectra for Phosphorus Fractions in Grassland Soils on the Tibetan Plateau. Agronomy, 2022, 12, 783.	3.0	5
7	Predictors of the Success of Natural Regeneration in a Himalayan Treeline Ecotone. Forests, 2022, 13, 454.	2.1	3
8	Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions. Agronomy, 2022, 12, 628.	3.0	11
9	Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment, 2022, 3, .	6.8	11
10	Impact of Climate and Slope Aspects on the Composition of Soil Bacterial Communities Involved in Pedogenetic Processes along the Chilean Coastal Cordillera. Microorganisms, 2022, 10, 847.	3.6	7
11	Evaluation of mathematical models for predicting particle size distribution using digital soil mapping in semiarid agricultural lands. Geocarto International, 2022, 37, 13016-13038.	3.5	4
12	Contextual spatial modelling in the horizontal and vertical domains. Scientific Reports, 2022, 12, .	3.3	3
13	Pioneer biocrust communities prevent soil erosion in temperate forests after disturbances. Biogeosciences, 2022, 19, 3225-3245.	3.3	14
14	Salt dome related soil salinity in southern Iran: Prediction and mapping with averaging machine learning models. Land Degradation and Development, 2021, 32, 1540-1554.	3.9	23
15	Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. Geoderma, 2021, 383, 114793.	5.1	58
16	Assessing agricultural salt-affected land using digital soil mapping and hybridized random forests. Geoderma, 2021, 385, 114858.	5.1	54
17	Soils, landscapes, and cultural concepts of favor and disfavor within complex adaptive systems and ResourceCultures: human-land interactions during the Holocene. Ecology and Society, 2021, 26, .	2.3	3
18	Latent State Inference in a Spatiotemporal Generative Model. Lecture Notes in Computer Science, 2021, , 384-395.	1.3	2

#	Article	IF	CITATIONS
19	Comparative Analysis of TMPA and IMERG Precipitation Datasets in the Arid Environment of El-Qaa Plain, Sinai. Remote Sensing, 2021, 13, 588.	4.0	12
20	Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions. Remote Sensing, 2021, 13, 1025.	4.0	34
21	Land Use and Soil Organic Carbon Stocks—Change Detection over Time Using Digital Soil Assessment: A Case Study from Kamyaran Region, Iran (1988–2018). Agronomy, 2021, 11, 597.	3.0	8
22	Spatio-Temporal Analysis of Heavy Metals in Arid Soils at the Catchment Scale Using Digital Soil Assessment and a Random Forest Model. Remote Sensing, 2021, 13, 1698.	4.0	27
23	Middle Bronze Age land use practices in the northwestern Alpine foreland – a multi-proxy study of colluvial deposits, archaeological features and peat bogs. Soil, 2021, 7, 269-304.	4.9	12
24	Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 2021, 7, .	10.3	104
25	Plant identity strongly structures the root-associated fungal community in a diverse subtropical forest. Basic and Applied Ecology, 2021, 55, 98-109.	2.7	9
26	Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping. Geoderma, 2021, 399, 115108.	5.1	52
27	Optimization of Rain Gauge Networks for Arid Regions Based on Remote Sensing Data. Remote Sensing, 2021, 13, 4243.	4.0	7
28	Determining the contribution of environmental factors in controlling dust pollution during cold and warm months of western Iran using different data mining algorithms and game theory. Ecological Indicators, 2021, 132, 108287.	6.3	15
29	Water's path from moss to soil: A multi-methodological study on water absorption and evaporation of soil-moss combinations. Journal of Hydrology and Hydromechanics, 2021, 69, 421-435.	2.0	13
30	Near surface air temperature lapse rates over complex terrain: a WRF based analysis of controlling factors and processes for the central Himalayas. Climate Dynamics, 2020, 54, 329-349.	3.8	10
31	Synthetic resampling strategies and machine learning for digital soil mapping in Iran. European Journal of Soil Science, 2020, 71, 352-368.	3.9	42
32	A tale of scale: Plot but not neighbourhood tree diversity increases leaf litter ant diversity. Journal of Animal Ecology, 2020, 89, 299-308.	2.8	19
33	Rising mean and extreme nearâ€surface air temperature across Nepal. International Journal of Climatology, 2020, 40, 2445-2463.	3.5	29
34	Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sensing, 2020, 12, 2234.	4.0	116
35	Spatio-temporal dynamic of soil quality in the central Iranian desert modeled with machine learning and digital soil assessment techniques. Ecological Indicators, 2020, 118, 106736.	6.3	41
36	Managing Soils for Recovering from the COVID-19 Pandemic. Soil Systems, 2020, 4, 46.	2.6	51

#	Article	IF	CITATIONS
37	How Do Newly-Amended Biochar Particles Affect Erodibility and Soil Water Movement?—A Small-Scale Experimental Approach. Soil Systems, 2020, 4, 60.	2.6	10
38	3D mapping of soil organic carbon content and soil moisture with multiple geophysical sensors and machine learning. Vadose Zone Journal, 2020, 19, e20062.	2.2	18
39	Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications, 2020, 11, 6329.	12.8	96
40	Regional and local scale variations in soil organic carbon stocks in West Greenland. Journal of Plant Nutrition and Soil Science, 2020, 183, 292-305.	1.9	2
41	Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran. Geoderma, 2020, 376, 114552.	5.1	59
42	Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space. Remote Sensing, 2020, 12, 1095.	4.0	109
43	Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Agronomy, 2020, 10, 573.	3.0	96
44	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122
45	Comparison of conditioned Latin hypercube and feature space coverage sampling for predicting soil classes using simulation from soil maps. Geoderma, 2020, 370, 114366.	5.1	32
46	Controlling Soil Erosion Using No-Till Farming Systems. , 2020, , 195-211.		9
47	Inferring, Predicting, and Denoising Causal Wave Dynamics. Lecture Notes in Computer Science, 2020, , 566-577.	1.3	2
48	Ecological relationships at a near-natural treeline, Rolwaling Valley, Nepal Himalaya: Implications for the sensitivity to climate change. Erdkunde, 2020, 74, 15-44.	0.8	5
49	Engaging with urban green spaces – A comparison of urban and rural allotment gardens in Southwestern Germany. Urban Forestry and Urban Greening, 2019, 43, 126381.	5.3	14
50	The relevant range of scales for multi-scale contextual spatial modelling. Scientific Reports, 2019, 9, 14800.	3.3	13
51	Soil Erosion and Land Degradation. Soil Systems, 2019, 3, 68.	2.6	8
52	Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region. Biogeosciences, 2019, 16, 2481-2499.	3.3	19
53	Early positive effects of tree species richness on soil organic carbon accumulation in a large-scale forest biodiversity experiment. Journal of Plant Ecology, 2019, 12, 882-893.	2.3	29
54	The strength of soil-plant interactions under forest is related to a Critical Soil Depth. Scientific Reports, 2019, 9, 8635.	3.3	30

#	Article	IF	CITATIONS
55	Tree diversity reduced soil erosion by affecting tree canopy and biological soil crust development in a subtropical forest experiment. Forest Ecology and Management, 2019, 444, 69-77.	3.2	30
56	Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China. PLoS ONE, 2019, 14, e0220881.	2.5	20
57	Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development, 2019, 39, 1.	5.3	96
58	Neolithic settlement dynamics derived from archaeological data and colluvial deposits between the Baar region and the adjacent low mountain ranges, southwest Germany. E&G Quaternary Science Journal, 2019, 68, 75-93.	0.7	13
59	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	8.0	177
60	Land use dynamics derived from colluvial deposits and bogs in the Black Forest, Germany. Journal of Plant Nutrition and Soil Science, 2018, 181, 240-260.	1.9	13
61	Multiâ€ŧrophic guilds respond differently to changing elevation in a subtropical forest. Ecography, 2018, 41, 1013-1023.	4.5	17
62	Seedling recruitment and facilitation dependence on safe site characteristics in a Himalayan treeline ecotone. Plant Ecology, 2018, 219, 115-132.	1.6	18
63	Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362, 80-83.	12.6	433
64	Experimental Evidence of Functional Group-Dependent Effects of Tree Diversity on Soil Fungi in Subtropical Forests. Frontiers in Microbiology, 2018, 9, 2312.	3.5	28
65	Spatial distribution of LAI and its relationship with throughfall kinetic energy of common tree species in a Chinese subtropical forest plantation. Forest Ecology and Management, 2018, 425, 189-195.	3.2	10
66	Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 2018, 9, 2989.	12.8	169
67	Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile. Catena, 2018, 170, 335-355.	5.0	77
68	Climate Change-Induced Shift of Tree Growth Sensitivity at a Central Himalayan Treeline Ecotone. Forests, 2018, 9, 267.	2.1	43
69	Spatial modelling with Euclidean distance fields and machine learning. European Journal of Soil Science, 2018, 69, 757-770.	3.9	91
70	Predicting reference soil groups using legacy data: A data pruning and Random Forest approach for tropical environment (Dano catchment, Burkina Faso). Scientific Reports, 2018, 8, 9959.	3.3	38
71	Archaeopedological analysis of colluvial deposits in favourable and unfavourable areas: reconstruction of land use dynamics in SW Germany. Royal Society Open Science, 2018, 5, 171624.	2.4	22
72	WRF-based simulation of an extreme precipitation event over the Central Himalayas: Atmospheric mechanisms and their representation by microphysics parameterization schemes. Atmospheric Research, 2018, 214, 21-35.	4.1	53

#	Article	IF	CITATIONS
73	Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181240.	2.6	169
74	Chemistry and microbiology of the Critical Zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera. Catena, 2018, 170, 183-203.	5.0	64
75	Sediment Reallocations due to Erosive Rainfall Events in the Three Gorges Reservoir Area, Central China. Land Degradation and Development, 2017, 28, 1212-1227.	3.9	22
76	Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation. Geoderma, 2017, 291, 21-32.	5.1	80
77	Uncertainty-guided sampling to improve digital soil maps. Catena, 2017, 153, 30-38.	5.0	33
78	Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands. Scientific Reports, 2017, 7, 43524.	3.3	53
79	Implications of tree species – environment relationships for the responsiveness of Himalayan krummholz treelines to climate change. Journal of Mountain Science, 2017, 14, 453-473.	2.0	13
80	Decreasing nutrient concentrations in soils and trees with increasing elevation across a treeline ecotone in Rolwaling Himal, Nepal. Journal of Mountain Science, 2017, 14, 843-858.	2.0	28
81	On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—a study from SE China. Journal of Plant Ecology, 2017, 10, 111-127.	2.3	102
82	In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biology and Biochemistry, 2017, 111, 66-77.	8.8	36
83	Archaeopedology and chronostratigraphy of colluvial deposits as a proxy for regional land use history (Baar, southwest Germany). Catena, 2017, 155, 93-113.	5.0	35
84	Impact of tree diversity and environmental conditions on the survival of shrub species in a forest biodiversity experiment in subtropical China. Journal of Plant Ecology, 2017, 10, 179-189.	2.3	20
85	Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecology and Evolution, 2017, 7, 10652-10674.	1.9	41
86	Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Scientific Reports, 2017, 7, 4222.	3.3	38
87	Potential CO2 emissions from defrosting permafrost soils of the Qinghai-Tibet Plateau under different scenarios of climate change in 2050 and 2070. Catena, 2017, 149, 221-231.	5.0	30
88	Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma, 2017, 288, 166-174.	5.1	44
89	Rising Precipitation Extremes across Nepal. Climate, 2017, 5, 4.	2.8	157
90	Soil cultures – the adaptive cycle of agrarian soil use in Central Europe: an interdisciplinary study using soil scientific and archaeological research. Ecology and Society, 2017, 22, .	2.3	12

#	Article	IF	CITATIONS
91	Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest. Biogeosciences, 2017, 14, 5775-5788.	3.3	47
92	Quantifying the added value of convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas. Earth System Dynamics, 2017, 8, 507-528.	7.1	46
93	Phytosociology and ecology of treeline ecotone vegetation in Rolwaling Himal, Nepal. Phytocoenologia, 2017, 47, 197-220.	0.5	8
94	Phytosociology and ecology of treeline ecotone vegetation in Rolwaling Himal, Nepal. Phytocoenologia, 2017, 47, 197-220.	0.5	6
95	Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests. Soil, 2016, 2, 49-61.	4.9	35
96	Incorporating limited field operability and legacy soil samples in a hypercube sampling design for digital soil mapping. Journal of Plant Nutrition and Soil Science, 2016, 179, 499-509.	1.9	40
97	Rule-based analysis of throughfall kinetic energy to evaluate biotic and abiotic factor thresholds to mitigate erosive power. Progress in Physical Geography, 2016, 40, 431-449.	3.2	12
98	Soil organic carbon stocks in permafrost-affected soils in West Greenland. Geoderma, 2016, 282, 147-159.	5.1	15
99	Soil Temperature and Soil Moisture Patterns in a Himalayan Alpine Treeline Ecotone. Arctic, Antarctic, and Alpine Research, 2016, 48, 501-521.	1.1	41
100	A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Scientific Reports, 2016, 6, 28958.	3.3	51
101	Climate Change and Treeline Dynamics in the Himalaya. , 2016, , 271-306.		13
102	Recent Climate Change over High Asia. , 2016, , 29-48.		7
103	How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Progress in Physical Geography, 2016, 40, 135-160.	3.2	53
104	Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biology and Biochemistry, 2016, 96, 180-190.	8.8	80
105	Predicting soil respiration for the Qinghai-Tibet Plateau: An empirical comparison of regression models. Pedobiologia, 2016, 59, 41-49.	1.2	10
106	Treeline Responsiveness to Climate Warming: Insights from a Krummholz Treeline in Rolwaling Himal, Nepal. , 2016, , 307-345.		8
107	Analytic Comparison of Temperature Lapse Rates and Precipitation Gradients in a Himalayan Treeline Environment: Implications for Statistical Downscaling. , 2016, , 49-64.		10
108	Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecology and Evolution, 2015, 5, 3541-3556.	1.9	45

#	Article	IF	CITATIONS
109	Predictive soil mapping with limited sample data. European Journal of Soil Science, 2015, 66, 535-547.	3.9	94
110	A Comparison of Two Methods for Quantifying Soil Organic Carbon of Alpine Grasslands on the Tibetan Plateau. PLoS ONE, 2015, 10, e0126372.	2.5	16
111	Species-Specific Effects on Throughfall Kinetic Energy in Subtropical Forest Plantations Are Related to Leaf Traits and Tree Architecture. PLoS ONE, 2015, 10, e0128084.	2.5	43
112	Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 2015, 6, 245-265.	7.1	137
113	Assessment of geo-hazards in a rapidly changing landscape: the three Gorges Reservoir Region in China. Environmental Earth Sciences, 2015, 74, 4939-4960.	2.7	12
114	The influence of leaf litter diversity and soil fauna on initial soil erosion in subtropical forests. Earth Surface Processes and Landforms, 2015, 40, 1439-1447.	2.5	45
115	Paleoclimate and weathering of the Tokaj (Hungary) loess–paleosol sequence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426, 170-182.	2.3	41
116	Throughfall kinetic energy in young subtropical forests: Investigation on tree species richness effects and spatial variability. Agricultural and Forest Meteorology, 2015, 213, 148-159.	4.8	44
117	Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytologist, 2015, 205, 771-785.	7.3	107
118	Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical <scp>C</scp> hina. Methods in Ecology and Evolution, 2014, 5, 74-89.	5.2	232
119	A FUZZY RULE BASE APPROACH FOR DEVELOPING A SOIL PROTECTION INDEX MAP: A CASE STUDY in the UPPER AWASH BASIN, ETHIOPIAN HIGHLANDS. Land Degradation and Development, 2014, 25, 483-500.	3.9	6
120	Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME Journal, 2014, 8, 660-674.	9.8	484
121	Pedogenesis, permafrost, substrate and topography: Plot and landscape scale interrelations of weathering processes on the central-eastern Tibetan Plateau. Geoderma, 2014, 226-227, 300-316.	5.1	34
122	Sampling optimal calibration sets in soil infrared spectroscopy. Geoderma, 2014, 226-227, 140-150.	5.1	89
123	Hyper-scale digital soil mapping and soil formation analysis. Geoderma, 2014, 213, 578-588.	5.1	90
124	Bacterial community structure in soils of the Tibetan Plateau affected by discontinuous permafrost or seasonal freezing. Biology and Fertility of Soils, 2014, 50, 555-559.	4.3	15
125	Site and neighborhood effects on growth of tree saplings in subtropical plantations (China). Forest Ecology and Management, 2014, 327, 118-127.	3.2	59
126	Momentum or kinetic energy – How do substrate properties influence the calculation of rainfall erosivity?. Journal of Hydrology, 2014, 517, 310-316.	5.4	43

#	Article	IF	CITATIONS
127	A comparison of calibration sampling schemes at the field scale. Geoderma, 2014, 232-234, 243-256.	5.1	38
128	Components of forest soil CO2 efflux estimated from Δ14C values of soil organic matter. Plant and Soil, 2013, 364, 55-68.	3.7	10
129	Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). European Journal of Forest Research, 2013, 132, 593-606.	2.5	135
130	Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China. Environmental Science and Pollution Research, 2013, 20, 6917-6933.	5.3	27
131	The spectrum-based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets. Geoderma, 2013, 195-196, 268-279.	5.1	147
132	Distance and similarity-search metrics for use with soil vis–NIR spectra. Geoderma, 2013, 199, 43-53.	5.1	63
133	European small portable rainfall simulators: A comparison of rainfall characteristics. Catena, 2013, 110, 100-112.	5.0	170
134	Degradation of cultivated bench terraces in the Three Gorges Area: Field mapping and data mining. Ecological Indicators, 2013, 34, 478-493.	6.3	44
135	Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift Für Geomorphologie, 2013, 57, 11-26.	0.8	70
136	Forest Age and Plant Species Composition Determine the Soil Fungal Community Composition in a Chinese Subtropical Forest. PLoS ONE, 2013, 8, e66829.	2.5	53
137	Simulated and projected climate extremes in the Zhujiang River Basin, South China, using the regional climate model <scp>COSMO LM</scp> . International Journal of Climatology, 2013, 33, 2988-3001.	3.5	43
138	Hydrological long-term dry and wet periods in the Xijiang River basin, South China. Hydrology and Earth System Sciences, 2013, 17, 135-148.	4.9	41
139	Kinetic Energy of Throughfall in Subtropical Forests of SE China – Effects of Tree Canopy Structure, Functional Traits, and Biodiversity. PLoS ONE, 2013, 8, e49618.	2.5	46
140	Soil Organic Carbon Pools and Stocks in Permafrost-Affected Soils on the Tibetan Plateau. PLoS ONE, 2013, 8, e57024.	2.5	58
141	Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications. Biogeosciences, 2012, 9, 2287-2299.	3.3	105
142	Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau. Environmental Research Letters, 2012, 7, 035401.	5.2	113
143	Establishing a luminescence chronology for a palaeosol-loess profile at Tokaj (Hungary): A comparison of quartz OSL and polymineral IRSL signals. Quaternary Geochronology, 2012, 10, 68-74.	1.4	44
144	Impact of tree saplings on the kinetic energy of rainfall—The importance of stand density, species identity and tree architecture in subtropical forests in China. Agricultural and Forest Meteorology, 2012, 156, 31-40.	4.8	40

#	Article	IF	CITATIONS
145	Splash erosion potential under tree canopies in subtropical SE China. Catena, 2012, 91, 85-93.	5.0	103
146	Probability Distribution of Precipitation Extremes for Weather Index–Based Insurance in the Zhujiang River Basin, South China. Journal of Hydrometeorology, 2012, 13, 1023-1037.	1.9	36
147	Soil Respiration in Tibetan Alpine Grasslands: Belowground Biomass and Soil Moisture, but Not Soil Temperature, Best Explain the Large-Scale Patterns. PLoS ONE, 2012, 7, e34968.	2.5	108
148	Relationships Between Soil Microorganisms, Plant Communities, and Soil Characteristics in Chinese Subtropical Forests. Ecosystems, 2012, 15, 624-636.	3.4	42
149	Effect of geographical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands. Global Ecology and Biogeography, 2012, 21, 416-427.	5.8	32
150	A new splash cup to measure the kinetic energy of rainfall. Journal of Plant Nutrition and Soil Science, 2011, 174, 596-601.	1.9	41
151	The late Quaternary loess record of Tokaj, Hungary: Reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers. Quaternary International, 2011, 240, 52-61.	1.5	74
152	Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 2011, 81, 25-41.	5.4	222
153	Lack of tree layer control on herb layer characteristics in a subtropical forest, China. Journal of Vegetation Science, 2011, 22, 1120-1131.	2.2	42
154	An approach to computing topographic wetness index based on maximum downslope gradient. Precision Agriculture, 2011, 12, 32-43.	6.0	133
155	Applicability of groundâ€penetrating radar as a tool for nondestructive soilâ€depth mapping on Pleistocene periglacial slope deposits. Journal of Plant Nutrition and Soil Science, 2010, 173, 173-184.	1.9	23
156	Removal of short-range-order minerals prior to grain-size analysis of volcanic ash soils. Journal of Plant Nutrition and Soil Science, 2010, 173, 799-804.	1.9	3
157	Estimation of throughfall erosivity in a highly diverse forest ecosystem using sand-filled splash cups. Journal of Earth Science (Wuhan, China), 2010, 21, 897-900.	3.2	21
158	Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China. Journal of Earth Science (Wuhan, China), 2010, 21, 835-845.	3.2	53
159	The ConMap approach for terrainâ€based digital soil mapping. European Journal of Soil Science, 2010, 61, 133-143.	3.9	62
160	A method to generate soilscapes from soil maps. Journal of Plant Nutrition and Soil Science, 2010, 173, 163-172.	1.9	23
161	Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, 2010, 155, 175-185.	5.1	236
162	Analysis on pedodiversity and spatial subset representativity-the German soil map 1:1,000,000. Journal of Plant Nutrition and Soil Science, 2009, 172, 91-100.	1.9	13

#	Article	IF	CITATIONS
163	Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology, 2009, 15, 3001-3017.	9.5	159
164	Conversion of cropland into grassland: Implications for soil organicâ€carbon stocks in two soils with different texture. Journal of Plant Nutrition and Soil Science, 2009, 172, 53-62.	1.9	104
165	Instance selection and classification tree analysis for large spatial datasets in digital soil mapping. Geoderma, 2008, 146, 138-146.	5.1	58
166	Digital soil mapping in Germany—a review. Journal of Plant Nutrition and Soil Science, 2007, 170, 181-181.	1.9	4
167	Spatial and vertical variation of soil carbon at two grassland sites — Implications for measuring soil carbon stocks. Geoderma, 2007, 141, 272-282.	5.1	194
168	Soil-aggregate formation as influenced by clay content and organic-matter amendment. Journal of Plant Nutrition and Soil Science, 2007, 170, 173-180.	1.9	128
169	Digital soil mapping in Germany—a review. Journal of Plant Nutrition and Soil Science, 2006, 169, 434-443.	1.9	82
170	Digital soil mapping using artificial neural networks. Journal of Plant Nutrition and Soil Science, 2005, 168, 21-33.	1.9	185
171	Soil erosion and sedimentation in Swaziland: an introduction. Soil and Tillage Research, 1997, 11, 219-228.	0.4	3
172	Geology, soils and saprolites of the Swaziland Middleveld. Soil and Tillage Research, 1997, 11, 229-246.	0.4	12
173	Hydrology and erodibility of the soils and saprolite cover of the Swaziland Middleveld. Soil and Tillage Research, 1997, 11, 247-262.	0.4	11
174	Soil erosion in Swaziland: A synthesis. Soil and Tillage Research, 1997, 11, 319-329.	0.4	13
175	Morphogenesis and erodibility of soil-saprolite complexes from magmatic rocks in Swaziland (Southern Africa). Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1995, 158, 169-176.	0.4	6