Beat W Scá, Safer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/472948/publications.pdf

Version: 2024-02-01

		41339	56717
126	7,780	49	83
papers	citations	h-index	g-index
129	129	129	10453
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Inhibition of HDACs reduces Ewing sarcoma tumor growth through EWS-FLI1 protein destabilization. Neoplasia, 2022, 27, 100784.	5.3	3
2	CRISPR activation screen identifies TGF \hat{l}^2 -associated PEG10 as a crucial tumor suppressor in Ewing sarcoma. Scientific Reports, 2022, 12, .	3.3	O
3	Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children's Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. European Journal of Cancer, 2022, 172, 367-386.	2.8	19
4	Immunohistochemical detection of PAX-FOXO1 fusion proteins in alveolar rhabdomyosarcoma using breakpoint specific monoclonal antibodies. Modern Pathology, 2021, 34, 748-757.	5 . 5	19
5	Paracrine Placental Growth Factor Signaling in Response to Ionizing Radiation Is p53-Dependent and Contributes to Radioresistance. Molecular Cancer Research, 2021, 19, 1051-1062.	3.4	3
6	Fenretinide Acts as Potent Radiosensitizer for Treatment of Rhabdomyosarcoma Cells. Frontiers in Oncology, 2021, 11, 664462.	2.8	2
7	Negative correlation of single-cell <i>PAX3:FOXO1</i> expression with tumorigenicity in rhabdomyosarcoma. Life Science Alliance, 2021, 4, e202001002.	2.8	4
8	High Frequency of Tumor Propagating Cells in Fusion-Positive Rhabdomyosarcoma. Genes, 2021, 12, 1373.	2.4	3
9	A combinatorial drug screen in PDX-derived primary rhabdomyosarcoma cells identifies the NOXA - BCL-XL/MCL-1 balance as target for re-sensitization to first-line therapy in recurrent tumors. Neoplasia, 2021, 23, 929-938.	5.3	2
10	YAP/TAZ inhibition reduces metastatic potential of Ewing sarcoma cells. Oncogenesis, 2021, 10, 2.	4.9	32
11	BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nature Communications, 2021, 12, 6924.	12.8	25
12	Aurora A Kinase Inhibition Destabilizes PAX3-FOXO1 and MYCN and Synergizes with Navitoclax to Induce Rhabdomyosarcoma Cell Death. Cancer Research, 2020, 80, 832-842.	0.9	31
13	Novel FGFR4-Targeting Single-Domain Antibodies for Multiple Targeted Therapies against Rhabdomyosarcoma. Cancers, 2020, 12, 3313.	3.7	17
14	Phenotypic profiling with a living biobank of primary rhabdomyosarcoma unravels disease heterogeneity and AKT sensitivity. Nature Communications, 2020, 11, 4629.	12.8	32
15	Miswired Enhancer Logic Drives a Cancer of the Muscle Lineage. IScience, 2020, 23, 101103.	4.1	26
16	Fenretinide induces a new form of dynamin-dependent cell death in pediatric sarcoma. Cell Death and Differentiation, 2020, 27, 2500-2516.	11,2	11
17	Combined Inhibition of Epigenetic Readers and Transcription Initiation Targets the EWS-ETS Transcriptional Program in Ewing Sarcoma. Cancers, 2020, 12, 304.	3.7	13
18	NuRD subunit CHD4 regulates super-enhancer accessibility in rhabdomyosarcoma and represents a general tumor dependency. ELife, 2020, 9, .	6.0	36

#	Article	lF	Citations
19	USP19 deubiquitinates EWS-FLI1 to regulate Ewing sarcoma growth. Scientific Reports, 2019, 9, 951.	3.3	28
20	A Perspective on Polo-Like Kinase-1 Inhibition for the Treatment of Rhabdomyosarcomas. Frontiers in Oncology, 2019, 9, 1271.	2.8	12
21	PAX3-FOXO1: Zooming in on an "undruggable―target. Seminars in Cancer Biology, 2018, 50, 115-123.	9.6	39
22	Reduced-Intensity Delayed Intensification in Standard-Risk Pediatric Acute Lymphoblastic Leukemia Defined by Undetectable Minimal Residual Disease: Results of an International Randomized Trial (AIEOP-BFM ALL 2000). Journal of Clinical Oncology, 2018, 36, 244-253.	1.6	71
23	Duxbling Stem Cells Meet Tumorigenesis. Cell Stem Cell, 2018, 23, 773-774.	11.1	O
24	The Proprotein Convertase Furin Contributes to Rhabdomyosarcoma Malignancy by Promoting Vascularization, Migration and Invasion. PLoS ONE, 2016, 11, e0161396.	2.5	16
25	The second European interdisciplinary Ewing sarcoma research summit - A joint effort to deconstructing the multiple layers of a complex disease. Oncotarget, 2016, 7, 8613-8624.	1.8	55
26	Proteasomal Degradation of the EWS-FLI1 Fusion Protein Is Regulated by a Single Lysine Residue. Journal of Biological Chemistry, 2016, 291, 26922-26933.	3.4	23
27	Helicase CHD4 is an epigenetic coregulator of PAX3-FOXO1 in alveolar rhabdomyosarcoma. Journal of Clinical Investigation, 2016, 126, 4237-4249.	8.2	46
28	The proprotein convertase furin is required to maintain viability of alveolar rhabdomyosarcoma cells. Oncotarget, 2016, 7, 76743-76755.	1.8	5
29	Targeting the EWS-ETS transcriptional program by BET bromodomain inhibition in Ewing sarcoma. Oncotarget, 2016, 7, 1451-1463.	1.8	48
30	Interfering with Hedgehog Pathway: New Avenues for Targeted Therapy in Rhabdomyosarcoma. Current Drug Targets, 2016, 17, 1228-1234.	2.1	2
31	Unpeaceful roles of mutant PAX proteins in cancer. Seminars in Cell and Developmental Biology, 2015, 44, 126-134.	5.0	14
32	PLK1 Phosphorylates PAX3-FOXO1, the Inhibition of Which Triggers Regression of Alveolar Rhabdomyosarcoma. Cancer Research, 2015, 75, 98-110.	0.9	36
33	PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1. Oncotarget, 2015, 6, 28895-28910.	1.8	21
34	FGFR4 signaling couples to Bim and not Bmf to discriminate subsets of alveolar rhabdomyosarcoma cells. International Journal of Cancer, 2014, 135, 1543-1552.	5.1	21
35	Rhabdomyosarcoma: Current Challenges and Their Implications for Developing Therapies. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a025650-a025650.	6.2	60
36	Cancer Stem Cells in Pediatric Sarcomas. Stem Cells and Cancer Stem Cells, 2014, , 111-126.	0.1	0

#	Article	IF	Citations
37	ESF-EMBO Symposium "Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence―Sept 29–Oct 4, Polonia Castle Pultusk, Poland. Frontiers in Oncology, 2013, 3, 142.	2.8	2
38	Cell-Based Small-Molecule Compound Screen Identifies Fenretinide as Potential Therapeutic for Translocation-Positive Rhabdomyosarcoma. PLoS ONE, 2013, 8, e55072.	2.5	20
39	The First European Interdisciplinary Ewing Sarcoma Research Summit. Frontiers in Oncology, 2012, 2, 54.	2.8	32
40	Preferred analysis methods for single genomic regions in RNA sequencing revealed by processing the shape of coverage. Nucleic Acids Research, 2012, 40, e63-e63.	14.5	4
41	Smallâ€molecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing's sarcoma. International Journal of Cancer, 2012, 131, 2153-2164.	5.1	65
42	CD133 Positive Embryonal Rhabdomyosarcoma Stem-Like Cell Population Is Enriched in Rhabdospheres. PLoS ONE, 2011, 6, e19506.	2.5	111
43	Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood, 2011, 118, 2077-2084.	1.4	370
44	Generation of a novel <i>rtTA</i> transgenic mouse to induce timeâ€controlled, tissueâ€specific alterations in <i>Pax2</i> â€expressing cells. Genesis, 2011, 49, 797-802.	1.6	6
45	Targets for cancer therapy in childhood sarcomas. Cancer Treatment Reviews, 2010, 36, 318-327.	7.7	93
46	Multidisciplinary management of childhood sarcoma: time to expand. Expert Review of Anticancer Therapy, 2010, 10, 1163-1166.	2.4	0
47	Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. Journal of Clinical Investigation, 2010, 120, 1310-1323.	8.2	287
48	Furin Targeted Drug Delivery for Treatment of Rhabdomyosarcoma in a Mouse Model. PLoS ONE, 2010, 5, e10445.	2.5	31
49	Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma. Molecular Cancer Therapeutics, 2009, 8 , $1838-1845$.	4.1	46
50	Identification of a rhabdomyosarcoma targeting peptide by phage display with sequence similarities to the tumour lymphaticâ€homing peptide LyPâ€1. International Journal of Cancer, 2009, 124, 2026-2032.	5.1	28
51	Immunohistochemical detection of EGFR, fibrillinâ€2, Pâ€cadherin and AP2β as biomarkers for rhabdomyosarcoma diagnostics. Histopathology, 2009, 54, 873-879.	2.9	40
52	Phosphorylation Regulates Transcriptional Activity of PAX3/FKHR and Reveals Novel Therapeutic Possibilities. Cancer Research, 2008, 68, 3767-3776.	0.9	49
53	Anemia and survival in childhood acute lymphoblastic leukemia. Haematologica, 2008, 93, 1652-1657.	3.5	14
54	Low-dose arsenic trioxide sensitizes glucocorticoid-resistant acute lymphoblastic leukemia cells to dexamethasone via an Akt-dependent pathway. Blood, 2007, 110, 2084-2091.	1.4	53

#	Article	IF	CITATIONS
55	Prediction of chromosomal aneuploidy from gene expression data. Genes Chromosomes and Cancer, 2007, 46, 75-86.	2.8	45
56	Array comparative genomic hybridization reveals unbalanced gain of the MYCN region in Wilms tumors. Cancer Genetics and Cytogenetics, 2007, 172, 61-65.	1.0	23
57	S100A1-deficient male mice exhibit increased exploratory activity and reduced anxiety-related responses. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1307-1319.	4.1	24
58	Subtype and Prognostic Classification of Rhabdomyosarcoma by Immunohistochemistry. Journal of Clinical Oncology, 2006, 24, 816-822.	1.6	133
59	Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood, 2005, 105, 821-826.	1.4	142
60	Clonal expansion of a new MLL rearrangement in the absence of leukemia. Blood, 2005, 105, 4151-4152.	1.4	20
61	Four and Half Lim Protein 2 (FHL2) Stimulates Osteoblast Differentiation. Journal of Bone and Mineral Research, 2005, 21, 17-28.	2.8	43
62	The Calcium-binding Protein S100A2 Interacts with p53 and Modulates Its Transcriptional Activity. Journal of Biological Chemistry, 2005, 280, 29186-29193.	3.4	124
63	The PAX5 oncogene is expressed in N-type neuroblastoma cells and increases tumorigenicity of a S-type cell line. Carcinogenesis, 2004, 25, 1839-1846.	2.8	57
64	Gene Expression Signatures Identify Rhabdomyosarcoma Subtypes and Detect a Novel t(2;2)(q35;p23) Translocation Fusing PAX3 to NCOA1. Cancer Research, 2004, 64, 5539-5545.	0.9	224
65	Cancer predisposition in mice deficient for the metastasis-associated Mts1(S100A4) gene. Oncogene, 2004, 23, 3670-3680.	5.9	59
66	Correlation of S100A4 expression with invasion and metastasis in oral squamous cell carcinoma. Oral Oncology, 2004, 40, 496-500.	1.5	33
67	S100 protein translocation in response to extracellular S100 is mediated by receptor for advanced glycation endproducts in human endothelial cells. Biochemical and Biophysical Research Communications, 2004, 316, 949-959.	2.1	97
68	Gene expression profiles and risk stratification in childhood acute lymphoblastic leukemia. Haematologica, 2004, 89, 801-8.	3.5	17
69	Ca2+-dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+-ATPase2a and phospholamban in the human heart. Biochemical and Biophysical Research Communications, 2003, 306, 550-557.	2.1	74
70	Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochemical and Biophysical Research Communications, 2003, 307, 375-381.	2.1	130
71	The transcriptional activator PAX3-FKHR rescues the defects of <i>Pax3</i> mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes and Development, 2003, 17, 2950-2965.	5.9	132
72	Telomerase Activity in Cell Lines of Pediatric Soft Tissue Sarcomas. Pediatric Research, 2003, 54, 718-723.	2.3	14

#	Article	IF	Citations
73	The Family of S100 Cell Signaling Proteins. , 2003, , 87-93.		4
74	Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. Journal of Cell Science, 2002, 115, 4925-4936.	2.0	230
75	The LIM-only Protein DRAL/FHL2 Interacts with and Is a Corepressor for the Promyelocytic Leukemia Zinc Finger Protein. Journal of Biological Chemistry, 2002, 277, 37045-37053.	3.4	67
76	Molecular Cloning and Characterization of the Human S100A14 Gene Encoding a Novel Member of the S100 Family. Genomics, 2002, 79, 513-522.	2.9	76
77	S100 proteins structure functions and pathology. Frontiers in Bioscience - Landmark, 2002, 7, d1356-1368.	3.0	327
78	S100A13 and S100A6 exhibit distinct translocation pathways in endothelial cells. Journal of Cell Science, 2002, 115, 3149-58.	2.0	35
79	Structural Insight into Human Zn2+-Bound S100A2 from NMR and Homology Modeling. Biochemical and Biophysical Research Communications, 2001, 288, 462-467.	2.1	19
80	S100A2, a Putative Tumor Suppressor Gene, Regulates In Vitro Squamous Cell Carcinoma Migration. Laboratory Investigation, 2001, 81, 599-612.	3.7	83
81	Immunolocalization of the calcium binding S100A1, S100A5 and S100A6 proteins in the dog cochlea during postnatal development. Developmental Brain Research, 2001, 126, 191-199.	1.7	53
82	Prognostic significance of the Ca2+ binding protein S100A2 in laryngeal squamous-cell carcinoma. International Journal of Cancer, 2000, 89, 345-349.	5.1	58
83	Transcriptional modulation of the anti-apoptotic protein BCL-XL by the paired box transcription factors PAX3 and PAX3/FKHR. Oncogene, 2000, 19, 2921-2929.	5.9	95
84	Concomitant Amplif ication and Expression of PAX7-FKHR and MYCN in a Human Rhabdomyosarcoma Cell Line Carrying a Cryptic $t(1;13)(p36;q14)$. Cancer Genetics and Cytogenetics, 2000, 121, 139-145.	1.0	20
85	S100 proteins in Corpora Amylacea from normal human brain11Published on the World Wide Web on 5 May 2000 Brain Research, 2000, 867, 280-288.	2.2	70
86	Inv(11)(p13p15) and Myf-3(MyoD1) in a Malignant Extrarenal Rhabdoid Tumor of a Premature Newborn. Pediatric Research, 2000, 48, 463-467.	2.3	17
87	Dral Is a P53-Responsive Gene Whose Four and a Half Lim Domain Protein Product Induces Apoptosis. Journal of Cell Biology, 2000, 151, 495-506.	5.2	93
88	Cloning and Characterization of the Human PAX7 Promoter. Biological Chemistry, 2000, 381, 331-5.	2.5	10
89	S100A13. Journal of Biological Chemistry, 2000, 275, 8686-8694.	3.4	49
90	Brain S100A5 Is a Novel Calcium-, Zinc-, and Copper Ion-binding Protein of the EF-hand Superfamily. Journal of Biological Chemistry, 2000, 275, 30623-30630.	3.4	90

#	Article	IF	Citations
91	S100A1, a New Marker for Acute Myocardial Ischemia. Biochemical and Biophysical Research Communications, 2000, 274, 865-871.	2.1	55
92	Transcriptional regulation of S100A1 and expression during mouse heart development. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1498, 207-219.	4.1	41
93	Subcellular distribution of \$100 proteins in tumor cells and their relocation in response to calcium activation. Histochemistry and Cell Biology, 1999, 111, 453-459.	1.7	68
94	Distribution of a specific calcium-binding protein of the S100 protein family, S100A6 (calcyclin), in subpopulations of neurons and glial cells of the adult rat nervous system., 1999, 404, 235-257.		60
95	Transcriptional activation of the human S100A2 promoter by wild-type p53. FEBS Letters, 1999, 445, 265-268.	2.8	63
96	Supratentorial Pilocytic Astrocytomas, Astrocytomas, Anaplastic Astrocytomas and Glioblastomas are Characterized by a Differential Expression of S100 Proteins. Brain Pathology, 1999, 9, 1-19.	4.1	82
97	Distribution of a specific calciumâ€binding protein of the S100 protein family, S100A6 (calcyclin), in subpopulations of neurons and glial cells of the adult rat nervous system. Journal of Comparative Neurology, 1999, 404, 235-257.	1.6	1
98	Immunohistochemical localization of S100A1 and S100A6 in postnatally developing salivary glands of rats. Histochemistry and Cell Biology, 1998, 110, 579-587.	1.7	15
99	Localization of Ca 2+ -binding S100 proteins in epithelial tumours of the skin. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1998, 432, 53-59.	2.8	65
100	Clustered organization of S100 genes in human and mouse. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1448, 254-263.	4.1	74
101	Binding of Ca2+ and Zn2+ to Human Nuclear S100A2 and Mutant Proteins. Journal of Biological Chemistry, 1998, 273, 18826-18834.	3.4	46
102	Rapid Molecular Diagnosis of Erythropoietic Protoporphyria among Swiss Patients. Clinical Chemistry and Laboratory Medicine, 1998, 36, 763-5.	2.3	5
103	Subtractive Cloning and Characterization of DRAL, a Novel LIM-Domain Protein Down-Regulated in Rhabdomyosarcoma. DNA and Cell Biology, 1997, 16, 433-442.	1.9	113
104	Novel Ca2+-binding S100 Proteins, Glial Fibrillary Acidic Protein and Tenascin in Chondro-osseous Tumors Acta Histochemica Et Cytochemica, 1997, 30, 445-453.	1.6	2
105	Selective association of S100A61According to the new nomenclature of S100 proteins [23].1 (calcyclin)-immunoreactive astrocytes with the tangential migration pathway of subventricular zone cells in the rat. Brain Research, 1997, 778, 388-392.	2.2	22
106	Repression of the candidate tumor suppressor gene S100A2 in breast cancer is mediated by site-specific hypermethylation. Cell Calcium, 1997, 22, 243-254.	2.4	108
107	Human recombinant alpha-parvalbumin and nine mutants with individually inactivated calcium- and magnesium-binding sites: biochemical and immunological properties. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1313, 179-186.	4.1	21
108	Altered expression of the Ca2+-binding protein S100A1 in human cardiomyopathy. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1313, 253-257.	4.1	149

#	Article	IF	Citations
109	Identification of Novel DNA Binding Sites Recognized by the Transcription Factor mPOU (POU6F1). Biochemical and Biophysical Research Communications, 1996, 220, 274-279.	2.1	13
110	Characterization of the Human and Mouse cDNAsCoding for S100A13, a New Member of the S100 Protein Family. Biochemical and Biophysical Research Communications, 1996, 227, 594-599.	2.1	75
111	α-Parvalbumin reduces depolarizationminduced elevations of cytosolic free calcium in human neuroblastoma cells. Cell Calcium, 1996, 19, 527-533.	2.4	14
112	Characterization of the human \$100A12 (calgranulin C, p6, CAAF1, CGRP) gene, a new member of the 5100 gene cluster on chromosome 1q21. Cell Calcium, 1996, 20, 459-464.	2.4	78
113	The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends in Biochemical Sciences, 1996, 21, 134-140.	7.5	585
114	Isolation of genes differentially expressed in human primary myoblasts and embryonal rhabdomyosarcoma., 1996, 66, 571-577.		71
115	Expression pattern of S100 calcium-binding proteins in human tumors. , 1996, 68, 325-332.		207
116	Immunohistochemical evaluation of the Ca2+-binding S-100 proteins S-100A1, S-100A2, S-100A4, S-100A6 and S-100B in salivary gland tumors. Journal of Oral Pathology and Medicine, 1996, 25, 547-555.	2.7	42
117	Isolation of genes differentially expressed in human primary myoblasts and embryonal rhabdomyosarcoma. International Journal of Cancer, 1996, 66, 571-577.	5.1	1
118	Human ferrochelatase: a novel mutation in patients with erythropoietic protoporphyria and an isoform caused by alternative splicing. Human Genetics, 1995, 95, 391-6.	3.8	15
119	Purification and Cation Binding Properties of the Recombinant Human S100 Calcium-binding Protein A3, an EF-hand Motif Protein with High Affinity for Zinc. Journal of Biological Chemistry, 1995, 270, 21056-21061.	3.4	63
120	Isolation of a YAC clone covering a cluster of nine \$100 genes on human chromosome 1q21: rationale for a new nomenclature of the \$100 calcium-binding protein family. Genomics, 1995, 25, 638-643.	2.9	321
121	Molecular cloning and characterization of a human PAX-7 cDNA expressed in normal and neoplastic myocytes. Nucleic Acids Research, 1994, 22, 4574-4582.	14.5	89
122	Expression of Ca2+-binding proteins of the S100 family in malignant human breast-cancer cell lines and biopsy samples. International Journal of Cancer, 1994, 57, 684-690.	5.1	133
123	A human POU domain gene, mPOU, is expressed in developing brain and specific adult tissues. FEBS Journal, 1994, 220, 753-762.	0.2	24
124	Expression of intracellular calcium-binding proteins in cultured skin fibroblasts from Alzheimer and normal aged donors. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1223, 391-397.	4.1	9
125	Human alpha and beta parvalbumins. Structure and tissue-specific expression. FEBS Journal, 1993, 215, 719-727.	0.2	72
126	Effect of cell history on response to helix–loop–helix family of myogenic regulators. Nature, 1990, 344, 454-458.	27.8	163