Kasper Engholm-Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/472933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UHT treatment and storage of liquid infant formula affects protein digestion and release of bioactive peptides. Food and Function, 2022, 13, 344-355.	4.6	11
2	Site-Specific Characterization of Heat-Induced Disulfide Rearrangement in Beta-Lactoglobulin by Liquid Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2022, 70, 847-856.	5.2	11
3	Oxidation of Whey Proteins during Thermal Treatment Characterized by a Site-Specific LC–MS/MS-Based Proteomic Approach. Journal of Agricultural and Food Chemistry, 2022, 70, 4391-4406.	5.2	7
4	A presynaptic phosphosignaling hub for lasting homeostatic plasticity. Cell Reports, 2022, 39, 110696.	6.4	17
5	Detection of protein oxidation products by fluorescence spectroscopy and trilinear data decomposition: Proof of concept. Food Chemistry, 2022, 396, 133732.	8.2	1
6	Cysteine residues are responsible for the sulfurous off-flavor formed in heated whey protein solutions. Food Chemistry Molecular Sciences, 2022, 5, 100120.	2.1	1
7	TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation. ELife, 2021, 10, .	6.0	26
8	SNAP-25 phosphorylation at Ser187 is not involved in Ca2+ or phorbolester-dependent potentiation of synaptic release. Molecular and Cellular Neurosciences, 2020, 102, 103452.	2.2	3
9	Generation of Aggregates of α-Lactalbumin by UV-B Light Exposure. Journal of Agricultural and Food Chemistry, 2020, 68, 6701-6714.	5.2	21
10	A Systems-level Characterization of the Differentiation of Human Embryonic Stem Cells into Mesenchymal Stem Cells*[S]. Molecular and Cellular Proteomics, 2019, 18, 1950-1966.	3.8	13
11	The interaction of assembly protein AP180 and clathrin is inhibited by multi-site phospho-mimetics. Neurochemistry International, 2019, 129, 104474.	3.8	1
12	The temporal profile of activity-dependent presynaptic phospho-signalling reveals long-lasting patterns of poststimulus regulation. PLoS Biology, 2019, 17, e3000170.	5.6	29
13	Affinity Proteomics for Interactome and Phosphoproteome Screening in Synaptosomes. Neuromethods, 2018, , 165-191.	0.3	Ο
14	Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen. Molecular and Cellular Proteomics, 2016, 15, 1032-1047.	3.8	62
15	Improving the Phosphoproteome Coverage for Limited Sample Amounts Using TiO2-SIMAC-HILIC (TiSH) Phosphopeptide Enrichment and Fractionation. Methods in Molecular Biology, 2016, 1355, 161-177.	0.9	28
16	Global Analysis of Myocardial Peptides Containing Cysteines With Irreversible Sulfinic and Sulfonic Acid Post-Translational Modifications. Molecular and Cellular Proteomics, 2015, 14, 609-620.	3.8	34
17	Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection Journal of Biological Chemistry, 2014, 289, 33875.	3.4	0
18	Comprehensive Quantitative Comparison of the Membrane Proteome, Phosphoproteome, and Sialiome of Human Embryonic and Neural Stem Cells. Molecular and Cellular Proteomics, 2014, 13, 311-328.	3.8	58

#	Article	IF	CITATIONS
19	Structural Basis for Phosphorylation and Lysine Acetylation Cross-talk in a Kinase Motif Associated with Myocardial Ischemia and Cardioprotection. Journal of Biological Chemistry, 2014, 289, 25890-25906.	3.4	48
20	Identification of Novel Protein Functions and Signaling Mechanisms by Genetics and Quantitative Phosphoproteomics in Caenorhabditis elegans. Methods in Molecular Biology, 2014, 1188, 107-124.	0.9	3
21	Technologies and challenges in largeâ€scale phosphoproteomics. Proteomics, 2013, 13, 910-931.	2.2	142
22	Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture. Journal of Proteome Research, 2013, 12, 3233-3245.	3.7	10
23	A Novel Method for the Simultaneous Enrichment, Identification, and Quantification of Phosphopeptides and Sialylated Glycopeptides Applied to a Temporal Profile of Mouse Brain Development. Molecular and Cellular Proteomics, 2012, 11, 1191-1202.	3.8	121
24	TiSH — a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. Journal of Proteomics, 2012, 75, 5749-5761.	2.4	174
25	Chemical Deamidation: A Common Pitfall in Large-Scale N-Linked Glycoproteomic Mass Spectrometry-Based Analyses. Journal of Proteome Research, 2012, 11, 1949-1957.	3.7	151
26	Stable isotope labeling with amino acids in cell culture (SILAC) of human embryonic stem cells under chemically defined culturing conditions. , 2012, , .		0
27	Quantitative proteomics by amino acid labeling in C. elegans. Nature Methods, 2011, 8, 845-847.	19.0	50
28	Multidimensional Strategy for Sensitive Phosphoproteomics Incorporating Protein Prefractionation Combined with SIMAC, HILIC, and TiO ₂ Chromatography Applied to Proximal EGF Signaling. Journal of Proteome Research, 2011, 10, 5383-5397.	3.7	63
29	Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds — Applications in acidic modification-specific proteomics. Journal of Proteomics, 2011, 75, 317-328.	2.4	61
30	A proteomeâ€scale study on in vivo protein N ^α â€acetylation using an optimized method. Proteomics, 2011, 11, 81-93.	2.2	30
31	Quantitative N-linked Glycoproteomics of Myocardial Ischemia and Reperfusion Injury Reveals Early Remodeling in the Extracellular Environment. Molecular and Cellular Proteomics, 2011, 10, M110.006833.	3.8	101
32	Analysis of Protein Glycosylation and Phosphorylation Using HILIC-MS. Chromatographic Science, 2011, , 551-576.	0.1	5
33	Selective enrichment of sialic acid–containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nature Protocols, 2010, 5, 1974-1982.	12.0	225
34	Quantitative phosphoproteomics of depolarizationâ€dependent protein phosphorylation in nerve terminals. FASEB Journal, 2010, 24, 905.2.	0.5	0
35	A Presynaptic Phosphosignaling Hub for Lasting Homeostatic Plasticity. SSRN Electronic Journal, 0, , .	0.4	1