
## Kuan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4729037/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American<br>Chemical Society, 2017, 139, 1336-1343.                                                                    | 6.6  | 813       |
| 2  | Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chemical Reviews, 2016, 116, 14675-14725.                                                                          | 23.0 | 418       |
| 3  | Fused Hexacyclic Nonfullerene Acceptor with Strong Nearâ€Infrared Absorption for Semitransparent<br>Organic Solar Cells with 9.77% Efficiency. Advanced Materials, 2017, 29, 1701308.                        | 11.1 | 364       |
| 4  | Enhancing the Performance of Polymer Solar Cells via Core Engineering of NIRâ€Absorbing Electron<br>Acceptors. Advanced Materials, 2018, 30, e1706571.                                                       | 11.1 | 309       |
| 5  | Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nature Photonics, 2021, 15, 681-689.                                                                                 | 15.6 | 255       |
| 6  | Fullerene derivative anchored SnO <sub>2</sub> for high-performance perovskite solar cells. Energy and Environmental Science, 2018, 11, 3463-3471.                                                           | 15.6 | 205       |
| 7  | Additive-induced miscibility regulation and hierarchical morphology enable 17.5% binary organic solar cells. Energy and Environmental Science, 2021, 14, 3044-3052.                                          | 15.6 | 170       |
| 8  | Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.                                                                                    | 11.7 | 137       |
| 9  | Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nature Communications, 2021, 12, 4815.                                                                | 5.8  | 135       |
| 10 | Precise Control of Perovskite Crystallization Kinetics via Sequential Aâ€5ite Doping. Advanced<br>Materials, 2020, 32, e2004630.                                                                             | 11.1 | 122       |
| 11 | Highâ€Performance Fluorinated Fusedâ€Ring Electron Acceptor with 3D Stacking and Exciton/Charge<br>Transport. Advanced Materials, 2020, 32, e2000645.                                                        | 11.1 | 122       |
| 12 | Multifunctional Crosslinkingâ€Enabled Strainâ€Regulating Crystallization for Stable, Efficient<br>αâ€FAPbI <sub>3</sub> â€Based Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008487.              | 11.1 | 106       |
| 13 | Effect of Core Size on Performance of Fused-Ring Electron Acceptors. Chemistry of Materials, 2018, 30, 5390-5396.                                                                                            | 3.2  | 102       |
| 14 | A Simple Way to Simultaneously Release the Interface Stress and Realize the Inner Encapsulation for<br>Highly Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905336. | 7.8  | 96        |
| 15 | Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems. Journal of Materials Chemistry A, 2016, 4, 1044-1051.                                          | 5.2  | 84        |
| 16 | Spiro[fluorene-9,9′-xanthene]-based hole transporting materials for efficient perovskite solar cells<br>with enhanced stability. Materials Chemistry Frontiers, 2017, 1, 100-110.                            | 3.2  | 84        |
| 17 | Alkoxy-Induced Near-Infrared Sensitive Electron Acceptor for High-Performance Organic Solar Cells.<br>Chemistry of Materials, 2018, 30, 4150-4156.                                                           | 3.2  | 79        |
| 18 | High-Performance Fused Ring Electron Acceptor–Perovskite Hybrid. Journal of the American Chemical<br>Society, 2018, 140, 14938-14944.                                                                        | 6.6  | 71        |

Kuan Liu

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Manipulating Crystallization Kinetics in Highâ€Performance Bladeâ€Coated Perovskite Solar Cells via<br>Cosolventâ€Assisted Phase Transition. Advanced Materials, 2022, 34, e2200276.                              | 11.1 | 64        |
| 20 | Fluorinated fused nonacyclic interfacial materials for efficient and stable perovskite solar cells.<br>Journal of Materials Chemistry A, 2017, 5, 21414-21421.                                                    | 5.2  | 59        |
| 21 | Novel Oligomer Enables Green Solvent Processed 17.5% Ternary Organic Solar Cells: Synergistic<br>Energy Loss Reduction and Morphology Fineâ€īuning. Advanced Materials, 2022, 34, e2107659.                       | 11.1 | 57        |
| 22 | Stretchable ITOâ€Free Organic Solar Cells with Intrinsic Antiâ€Reflection Substrate for Highâ€Efficiency<br>Outdoor and Indoor Energy Harvesting. Advanced Functional Materials, 2021, 31, 2010172.               | 7.8  | 53        |
| 23 | A perylene diimide based polymer: a dual function interfacial material for efficient perovskite solar<br>cells. Materials Chemistry Frontiers, 2017, 1, 1079-1086.                                                | 3.2  | 51        |
| 24 | Enhancing the performance of non-fullerene organic solar cells <i>via</i> end group engineering of fused-ring electron acceptors. Journal of Materials Chemistry A, 2018, 6, 16638-16644.                         | 5.2  | 47        |
| 25 | A low temperature processed fused-ring electron transport material for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24820-24825.                                           | 5.2  | 46        |
| 26 | Enhancing the performance of the electron acceptor ITIC-Th <i>via</i> tailoring its end groups.<br>Materials Chemistry Frontiers, 2018, 2, 537-543.                                                               | 3.2  | 46        |
| 27 | Bottomâ€Up Quasiâ€Epitaxial Growth of Hybrid Perovskite from Solution Process—Achieving<br>Highâ€Efficiency Solar Cells via Template â€Guided Crystallization. Advanced Materials, 2021, 33, e2100009.            | 11.1 | 44        |
| 28 | Comparison of Linear- and Star-Shaped Fused-Ring Electron Acceptors. , 2019, 1, 367-374.                                                                                                                          |      | 43        |
| 29 | High-performance organic solar cells based on polymer donor/small molecule donor/nonfullerene<br>acceptor ternary blends. Journal of Materials Chemistry A, 2019, 7, 2268-2274.                                   | 5.2  | 42        |
| 30 | Black Phosphorous Quantum Dots Sandwiched Organic Solar Cells. Small, 2019, 15, e1903977.                                                                                                                         | 5.2  | 41        |
| 31 | High-Performance Mid-Bandgap Fused-Pyrene Electron Acceptor. Chemistry of Materials, 2019, 31, 6484-6490.                                                                                                         | 3.2  | 40        |
| 32 | Printing Highâ€Efficiency Perovskite Solar Cells in Highâ€Humidity Ambient Environment—An In Situ<br>Guided Investigation. Advanced Science, 2021, 8, 2003359.                                                    | 5.6  | 40        |
| 33 | Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC. Light: Science and Applications, 2021, 10, 239. | 7.7  | 40        |
| 34 | Enhancing the performance of a fused-ring electron acceptor <i>via</i> extending benzene to naphthalene. Journal of Materials Chemistry C, 2018, 6, 66-71.                                                        | 2.7  | 38        |
| 35 | Highâ€Mobility pâ€Type Organic Semiconducting Interlayer Enhancing Efficiency and Stability of<br>Perovskite Solar Cells. Advanced Science, 2017, 4, 1700025.                                                     | 5.6  | 36        |
| 36 | Efficient Slantwise Aligned Dion–Jacobson Phase Perovskite Solar Cells Based on<br>Transâ€1,4â€Cyclohexanediamine. Small, 2020, 16, e2003098.                                                                     | 5.2  | 33        |

Kuan Liu

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Application of a new π-conjugated ladder-like polymer in enhancing the stability and efficiency of perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 1417-1424.                                          | 5.2 | 32        |
| 38 | High-performance ternary organic solar cells with photoresponses beyond 1000 nm. Journal of Materials Chemistry A, 2018, 6, 24210-24215.                                                                                  | 5.2 | 31        |
| 39 | Fused octacyclic electron acceptor isomers for organic solar cells. Journal of Materials Chemistry A, 2019, 7, 21432-21437.                                                                                               | 5.2 | 26        |
| 40 | Passivated Metal Oxide n-Type Contacts for Efficient and Stable Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 1111-1118.                                                                                    | 2.5 | 26        |
| 41 | Uncovering the out-of-plane nanomorphology of organic photovoltaic bulk heterojunction by GTSAXS. Nature Communications, 2021, 12, 6226.                                                                                  | 5.8 | 23        |
| 42 | ZnO electron transporting layer engineering realized over 20% efficiency and over 1.28 V openâ€circuit<br>voltage in allâ€inorganic perovskite solar cells. EcoMat, 2022, 4, .                                            | 6.8 | 23        |
| 43 | Self-assembly enables simple structure organic photovoltaics via green-solvent and open-air-printing:<br>Closing the lab-to-fab gap. Materials Today, 2022, 55, 46-55.                                                    | 8.3 | 23        |
| 44 | Enhancing Efficiency and Stability of Organic Solar Cells by UV Absorbent. Solar Rrl, 2017, 1, 1700148.                                                                                                                   | 3.1 | 21        |
| 45 | Electropolymerization Porous Aromatic Framework Film As a Hole-Transport Layer for Inverted<br>Perovskite Solar Cells with Superior Stability. ACS Applied Materials & Interfaces, 2017, 9,<br>43688-43695.               | 4.0 | 19        |
| 46 | Facile synthesis of high-performance nonfullerene acceptor isomers <i>via</i> a one stone two birds strategy. Journal of Materials Chemistry A, 2019, 7, 20667-20674.                                                     | 5.2 | 19        |
| 47 | Enhancing the <i>J</i> <sub>SC</sub> of P3HT-Based OSCs via a Thiophene-Fused Aromatic Heterocycle<br>as a "l€-Bridge―for Aâ^ï€â€"Dâ^ï€â€"A-Type Acceptors. ACS Applied Materials & Interfaces, 2019, 11,<br>26005-26016. | 4.0 | 19        |
| 48 | Z-Shaped Fused-Chrysene Electron Acceptors for Organic Photovoltaics. ACS Applied Materials &<br>Interfaces, 2019, 11, 33006-33011.                                                                                       | 4.0 | 18        |
| 49 | Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a<br>Star-Shaped Acceptor. ACS Applied Materials & Interfaces, 2020, 12, 50660-50667.                                             | 4.0 | 16        |
| 50 | Size Modulation and Heterovalent Doping Facilitated Hybrid Organic and Perovskite Quantum Dot<br>Bulk Heterojunction Solar Cells. ACS Applied Energy Materials, 2020, 3, 11359-11367.                                     | 2.5 | 14        |
| 51 | Ambipolar-transport wide-bandgap perovskite interlayer for organic photovoltaics with over 18% efficiency. Matter, 2022, 5, 2238-2250.                                                                                    | 5.0 | 14        |
| 52 | Upscaling perovskite solar cells via the ambient deposition of perovskite thin films. Trends in Chemistry, 2021, 3, 747-764.                                                                                              | 4.4 | 12        |
| 53 | A thiophene-fused benzotriazole unit as a "π-bridge―in A-ï€-D-ï€-A type acceptor to achieve more<br>balanced JSC and VOC for OSCs. Organic Electronics, 2020, 82, 105705.                                                 | 1.4 | 10        |
| 54 | Effects of Fluorination Position on Fusedâ€Ring Electron Acceptors. Small Structures, 2020, 1, 2000006.                                                                                                                   | 6.9 | 8         |

| #  | Article                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of linking units on fused-ring electron acceptor dimers. Journal of Materials Chemistry A, 2020, 8, 13735-13741. | 5.2 | 8         |
| 56 | New roles of fused-ring electron acceptors in organic solar cells. Journal of Materials Chemistry A, 2019, 7, 4766-4770. | 5.2 | 5         |