Seung Pil Pack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4728984/publications.pdf

Version: 2024-02-01

257357 330025 1,738 90 24 citations h-index papers

37 g-index 91 91 91 1845 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	BMP2-Mediated Silica Deposition: An Effective Strategy for Bone Mineralization. ACS Biomaterials Science and Engineering, 2023, 9, 1823-1833.	2.6	7
2	Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. Bioresource Technology, 2022, 344, 126404.	4.8	50
3	Colorimetric Sensing of Lactate in Human Sweat Using Polyaniline Nanoparticles-Based Sensor Platform and Colorimeter. Biosensors, 2022, 12, 248.	2.3	11
4	pH-responsive phototherapeutic poly(acrylic acid)-calcium phosphate passivated TiO2 nanoparticle-based drug delivery system for cancer treatment applications. Journal of Industrial and Engineering Chemistry, 2022, 112, 258-270.	2.9	12
5	Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications. Acta Biomaterialia, 2021, 120, 38-56.	4.1	53
6	Effect of Human or Mouse IL-7 on the Homeostasis of Porcine T Lymphocytes. Immune Network, 2021, 21, e24.	1.6	1
7	Tyrosinase-mediated rapid and permanent chitosan/gelatin and chitosan/gelatin/nanohydroxyapatite hydrogel. Korean Journal of Chemical Engineering, 2021, 38, 98-103.	1.2	12
8	Biosilicated collagen∫î²-tricalcium phosphate composites as a BMP-2-delivering boneâ€graft substitute for accelerated craniofacial bone regeneration. Biomaterials Research, 2021, 25, 13.	3.2	25
9	Bone Graft Biomineral Complex Coderived from Marine Biocalcification and Biosilicification. ACS Applied Bio Materials, 2021, 4, 6046-6055.	2.3	2
10	Synthesis of sub-50Ânm bio-inspired silica particles using a C-terminal-modified ferritin template with a silica-forming peptide. Journal of Industrial and Engineering Chemistry, 2021, 101, 262-269.	2.9	7
11	Bio-inspired formation of silica particles using the silica-forming peptides found by silica-binding motif sequence, RRSSGGRR. Process Biochemistry, 2021, 111, 262-269.	1.8	3
12	Carbonic Anhydrase as CO2 capturing agent: its Classes and Catalytic Mechanisms. International Journal of Mathematics and Computers in Simulation, 2021, 15, 102-106.	0.2	1
13	Novel silica forming peptide, RSGH, from Equus caballus: Its unique biosilica formation under acidic conditions. Biochemical Engineering Journal, 2020, 153, 107389.	1.8	11
14	Compartment-restricted and rate-controlled dual drug delivery system using a biosilica-enveloped ferritin cage. Journal of Industrial and Engineering Chemistry, 2020, 81, 367-374.	2.9	25
15	Stabilized and Immobilized Carbonic Anhydrase on Electrospun Nanofibers for Enzymatic CO ₂ Conversion and Utilization in Expedited Microalgal Growth. Environmental Science & Enzymatic & Environmental Science & Enzymatic & Environmental Science & Enzymatic & En	4.6	69
16	Production of TiO2-deposited Diatoms and Their Applications for Photo-catalytic Degradation of Aqueous Pollutants. Biotechnology and Bioprocess Engineering, 2020, 25, 758-765.	1.4	15
17	Solvo-hydrothermal synthesis of calcium phosphate nanostructures from calcium inositol hexakisphosphate precursor in water-ethanol mixed solutions. Korean Journal of Chemical Engineering, 2020, 37, 891-897.	1.2	3
18	A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles. Scientific Reports, 2020, 10, 5558.	1.6	69

#	Article	IF	CITATIONS
19	Silaffin-3-derived pentalysine cluster as a new fusion tag for one-step immobilization and purification of recombinant Bacillus subtilis catalase on bare silica particles. International Journal of Biological Macromolecules, 2020, 159, 1103-1112.	3.6	14
20	Fusion tags to enhance heterologous protein expression. Applied Microbiology and Biotechnology, 2020, 104, 2411-2425.	1.7	94
21	A dual-functional peptide, Kpt from Ruegeria pomeroyi DSS-3 for protein purification and silica precipitation. Biochemical Engineering Journal, 2020, 163, 107726.	1.8	5
22	Nucleobase-involved native chemical ligation: a novel reaction between an oxanine nucleobase and N-terminal cysteine for oligonucleotide–peptide conjugation. Chemical Communications, 2020, 56, 5508-5511.	2.2	6
23	Novel enzymatic single-nucleotide modification of DNA oligomer: prevention of incessant incorporation of nucleotidyl transferase by ribonucleotide-borate complex. Nucleic Acids Research, 2019, 47, e102-e102.	6.5	8
24	Anticancer effect of nor-wogonin (5, 7, 8-trihydroxyflavone) on human triple-negative breast cancer cells via downregulation of TAK1, NF-κB, and STAT3. Pharmacological Reports, 2019, 71, 289-298.	1.5	34
25	Direct immobilization and recovery of recombinant proteins from cell lysates by using EctP1-peptide as a short fusion tag for silica and titania supports. International Journal of Biological Macromolecules, 2019, 135, 969-977.	3.6	23
26	Nanosized and tunable design of biosilica particles using novel silica-forming peptide-modified chimeric ferritin templates. Journal of Industrial and Engineering Chemistry, 2019, 73, 198-204.	2.9	12
27	Self-encapsulation and controlled release of recombinant proteins using novel silica-forming peptides as fusion linkers. International Journal of Biological Macromolecules, 2019, 125, 1175-1183.	3.6	27
28	The NT11, a novel fusion tag for enhancing protein expression in Escherichia coli. Applied Microbiology and Biotechnology, 2019, 103, 2205-2216.	1.7	46
29	Biosilica-enveloped ferritin cage for more efficient drug deliveries. Process Biochemistry, 2018, 68, 182-189.	1.8	19
30	Improvement in the Reproducibility of a Paper-based Analytical Device (PAD) Using Stable Covalent Binding between Proteins and Cellulose Paper. Biotechnology and Bioprocess Engineering, 2018, 23, 686-692.	1.4	30
31	Decreased Expression of Sphingosine-1-Phosphate Receptor 1 in the Blood Leukocyte of Rheumatoid Arthritis Patients. Immune Network, 2018, 18, e39.	1.6	10
32	Stabilization of Bovine carbonic anhydrase II through rational site-specific immobilization. Biochemical Engineering Journal, 2018, 138, 29-36.	1.8	11
33	Novel silica-forming peptides derived from Ectocarpus siliculosus. Process Biochemistry, 2017, 58, 193-198.	1.8	24
34	Expression and characterization of a codon-optimized alkaline-stable carbonic anhydrase from Aliivibrio salmonicida for CO2 sequestration applications. Bioprocess and Biosystems Engineering, 2017, 40, 413-421.	1.7	8
35	In-depth compositional analysis of water-soluble and -insoluble organic substances in fine (PM2.5) airborne particles using ultra-high-resolution 15T FT-ICR MS and GC×GC-TOFMS. Environmental Pollution, 2017, 225, 329-337.	3.7	32
36	Increased incorporation of gaseous CO 2 into succinate by Escherichia coli overexpressing carbonic anhydrase and phosphoenolpyruvate carboxylase genes. Journal of Biotechnology, 2017, 241, 101-107.	1.9	12

#	Article	IF	CITATIONS
37	Design of bio-inspired silica-encapsulated protein A for improved immunoprecipitation assays. Biochemical Engineering Journal, 2017, 128, 12-18.	1.8	17
38	Design of reactive-end DNA oligomers via incorporation of oxanine into oligonucleotides using terminal deoxynucleotidyl transferase. Process Biochemistry, 2017, 62, 99-105.	1.8	5
39	Chemical characterization of dissolved organic matter in moist acidic tussock tundra soil using ultra-high resolution 15T FT-ICR mass spectrometry. Biotechnology and Bioprocess Engineering, 2017, 22, 637-646.	1.4	23
40	The role of extracellular polymeric substances in reducing copper inhibition to nitrification in activated sludge. Biotechnology and Bioprocess Engineering, 2016, 21, 683-688.	1.4	3
41	Chimeric protein of internally duplicated $\hat{l}\pm$ -type carbonic anhydrase from Dunaliella species for improved expression and CO2 sequestration. Process Biochemistry, 2016, 51, 1222-1229.	1.8	12
42	Highly effective detection of inflamed cells using a modified bradykinin ligand labeled with FITC fluorescence. Enzyme and Microbial Technology, 2016, 82, 191-196.	1.6	4
43	A cold-adapted tyrosinase with an abnormally high monophenolase/diphenolase activity ratio originating from the marine archaeon Candidatus Nitrosopumilus koreensis. Biotechnology Letters, 2016, 38, 1535-1542.	1.1	29
44	Recombinant production of a shell matrix protein in Escherichia coli and its application to the biomimetic synthesis of spherulitic calcite crystals. Biotechnology Letters, 2016, 38, 809-816.	1.1	8
45	Improved stability and reusability of endoglucanase from Clostridium thermocellum by a biosilica-based auto-encapsulation method. Biochemical Engineering Journal, 2016, 105, 144-149.	1.8	19
46	High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development. Chemosphere, 2016, 143, 128-134.	4.2	41
47	Highly-efficient T4 DNA ligase-based SNP analysis using a ligation fragment containing a modified nucleobase at the end. Chemical Communications, 2015, 51, 13090-13093.	2.2	11
48	Characterization of Phosphoenolpyruvate Carboxylase from Oceanimonas smirnovii in Escherichia coli. Applied Biochemistry and Biotechnology, 2015, 177, 217-225.	1.4	3
49	Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: Its expression and characterization for CO2-sequestration applications. Process Biochemistry, 2014, 49, 2114-2121.	1.8	37
50	Bioinspired Silica Nanocomposite with Autoencapsulated Carbonic Anhydrase as a Robust Biocatalyst for CO ₂ Sequestration. ACS Catalysis, 2014, 4, 4332-4340.	5.5	88
51	High activity and stability of codon-optimized phosphoenolpyruvate carboxylase from Photobacterium profundum SS9 at low temperatures and its application for in vitro production of oxaloacetate. Bioprocess and Biosystems Engineering, 2014, 37, 331-335.	1.7	3
52	Hypothetical cathepsin-like protein from Nematostella vectensis and its silicatein-like cathepsin mutant for biosilica production. Process Biochemistry, 2014, 49, 95-101.	1.8	16
53	Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol. Enzyme and Microbial Technology, 2014, 67, 8-16.	1.6	10
54	Cyclization tag for the detection and facile purification of backbone-cyclized proteins. Analytical Biochemistry, 2013, 436, 137-141.	1.1	6

#	Article	IF	CITATIONS
55	Protein Thermostabilizing Factors: High Relative Occurrence of Amino Acids, Residual Properties, and Secondary Structure Type in Different Residual State. Applied Biochemistry and Biotechnology, 2013, 171, 1212-1226.	1.4	10
56	Conversion of carbon dioxide to oxaloacetate using integrated carbonic anhydrase and phosphoenolpyruvate carboxylase. Bioprocess and Biosystems Engineering, 2013, 36, 1923-1928.	1.7	17
57	Surface immobilization of protein via biosilification catalyzed by silicatein fused to glutathione S-transferase (GST). Bioprocess and Biosystems Engineering, 2013, 36, 643-648.	1.7	19
58	Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO2 sequestration application. Bioprocess and Biosystems Engineering, 2013, 36, 375-381.	1.7	25
59	Specific detection of inflamed cells using TLR1 antibody and its secondary antibody-conjugated nano-beads. Enzyme and Microbial Technology, 2013, 53, 223-228.	1.6	2
60	Oxaloacetate and malate production in engineered Escherichia coli by expression of codon-optimized phosphoenolpyruvate carboxylase2 gene from Dunaliella salina. Bioprocess and Biosystems Engineering, 2013, 36, 127-131.	1.7	15
61	Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli. Enzyme and Microbial Technology, 2013, 53, 200-205.	1.6	24
62	Translocation and Stability of Replicative DNA Helicases upon Encountering DNA-Protein Cross-links. Journal of Biological Chemistry, 2013, 288, 4649-4658.	1.6	57
63	Carbonic anhydrase: Its biocatalytic mechanisms and functional properties for efficient CO ₂ capture process development. Engineering in Life Sciences, 2013, 13, 422-431.	2.0	39
64	Application of Hypothetical Cathepsin-like Protein from Nematostella vectensis and Its Mutant Silicatein-like Cathepsin for Biosilica Production. Materials Research Society Symposia Proceedings, 2013, 1569, 251-258.	0.1	0
65	Solution structure and stability of the DNA undecamer duplexes containing oxanine mismatch. Nucleic Acids Research, 2012, 40, 1841-1855.	6.5	3
66	T7 RNA Polymerases Backed up by Covalently Trapped Proteins Catalyze Highly Error Prone Transcription. Journal of Biological Chemistry, 2012, 287, 6562-6572.	1.6	47
67	Shadow image based high-throughput continuous cell monitoring for point-of-care and telemedicine applications. , 2012, , .		0
68	Increased expression level and catalytic activity of internally-duplicated carbonic anhydrase from Dunaliella species by reconstitution of two separate domains. Process Biochemistry, 2012, 47, 1423-1427.	1.8	14
69	Expression and Characterization of Codon-Optimized Carbonic Anhydrase from Dunaliella Species for CO2 Sequestration Application. Applied Biochemistry and Biotechnology, 2012, 167, 2341-2356.	1.4	30
70	Expression of Codon-Optmized Phosphoenolpyruvate Carboxylase Gene from Glaciecola sp. HTCC2999 in Escherichia coli and its Application for C4 Chemical Production. Applied Biochemistry and Biotechnology, 2012, 167, 1845-1853.	1.4	7
71	Quantitative analysis of specific target DNA oligomers using a DNA-immobilized packed-column system. Analytical and Bioanalytical Chemistry, 2011, 401, 667-676.	1.9	1
72	Accurate guanine:cytosine discrimination in T4 DNA ligase-based single nucleotide polymorphism analysis using an oxanine-containing ligation fragment. Analytical Biochemistry, 2010, 398, 257-259.	1.1	8

#	Article	IF	Citations
73	Synthesis of 2′â€Deoxyoxanosine from 2′â€Deoxyguanosine, Conversion to Its Phosphoramidite, and Incorporation into Oxanineâ€Containing Oligodeoxynucleotides. Current Protocols in Nucleic Acid Chemistry, 2010, 41, Unit 4.39.	0.5	1
74	Comparison of the molecular influences of NO-induced lesions in DNA strands on the reactivity of polynucleotide kinases, DNA ligases and DNA polymerases. Journal of Biochemistry, 2010, 147, 697-703.	0.9	2
75	Biomolecular response of oxanine in DNA strands to T4 polynucleotide kinase, T4 DNA ligase, and restriction enzymes. Biochemical and Biophysical Research Communications, 2010, 391, 118-122.	1.0	5
76	Reinvestigation of the Molecular Influence of Hypoxanthine on the DNA Cleavage Efficiency of Restriction Endonucleases BgIII, EcoRI and BamHI. Journal of Biochemistry, 2009, 146, 201-208.	0.9	3
77	Stabilization of the immobilized linkers and DNA probes for DNA microarray fabrication by end-capping of the remaining unreacted silanol on the glass. Journal of Biotechnology, 2009, 140, 242-245.	1.9	3
78	Reactivity of oxanine: efficient fabrication of DNA microarray by using oxanine-containing DNA oligomer as probe molecule. Nucleic Acids Symposium Series, 2008, 52, 441-442.	0.3	0
79	Biophysical Stability and Enzymatic Recognition of Oxanine in Dna. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1589-1593.	0.4	4
80	Functional reactivity of oxanine: its biological meanings and biotechnological applications. Nucleic Acids Symposium Series, 2007, 51, 53-54.	0.3	3
81	Repair mechanism of DNA-protein cross-link damage in Escherichia coli. Nucleic Acids Symposium Series, 2007, 51, 213-214.	0.3	3
82	Direct immobilization of DNA oligomers onto the amine-functionalized glass surface for DNA microarray fabrication through the activation-free reaction of oxanine. Nucleic Acids Research, 2007, 35, e110.	6.5	40
83	Base sequence- and T m-dependent DNA oligomer separation by open tubular capillary columns carrying complementary DNA oligomers as probes. Analytical and Bioanalytical Chemistry, 2007, 388, 919-928.	1.9	1
84	Development of an efficient amine-functionalized glass platform by additional silanization treatment with alkylsilane. Analytical and Bioanalytical Chemistry, 2006, 386, 1649-1655.	1.9	39
85	Structural property and enzymatic response of oxanine in DNA strands. Nucleic Acids Symposium Series, 2006, 50, 97-98.	0.3	1
86	Chemical synthesis and thermodynamic characterization of oxanine-containing oligodeoxynucleotides. Nucleic Acids Research, 2005, 33, 5771-5780.	6.5	18
87	Packing-based difference of structural features between thermophilic and mesophilic proteins. International Journal of Biological Macromolecules, 2005, 35, 169-174.	3.6	31
88	Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. Journal of Biotechnology, 2004, 111, 269-277.	1.9	101
89	Protein thermostability: structure-based difference of residual properties between thermophilic and mesophilic proteins. Journal of Molecular Catalysis B: Enzymatic, 2003, 26, 257-264.	1.8	20
90	Title is missing!. Biotechnology Letters, 2002, 24, 1919-1925.	1.1	19