
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4728869/publications.pdf Version: 2024-02-01

CEDALD ΜΑΊΔΝΟΗ

#	Article	IF	CITATIONS
1	Ternstroenol F: a new pentacyclic triterpenoid saponin isolated from the Australian rainforest plant <i>Ternstroemia cherryi</i> . Natural Product Research, 2023, 37, 2421-2426.	1.0	5
2	Acronyols A and B, new anti-inflammatory prenylated phloroglucinols from the fruits of <i>Acronychia crassipetala</i> . Natural Product Research, 2022, 36, 4358-4364.	1.0	2
3	Pharmacological considerations for treating neuroinflammation with curcumin in Alzheimer's disease. Journal of Neural Transmission, 2022, 129, 755-771.	1.4	9
4	Synergistic Anti-Inflammatory Activity of Ginger and Turmeric Extracts in Inhibiting Lipopolysaccharide and Interferon-γ-Induced Proinflammatory Mediators. Molecules, 2022, 27, 3877.	1.7	11
5	Potential anti-neuroinflammatory compounds from Australian plants – A review. Neurochemistry International, 2021, 142, 104897.	1.9	8
6	Identification of tetragocarbone C and sideroxylin as the most potent anti-inflammatory components of Syncarpia glomulifera. Fìtoterapìâ, 2021, 150, 104843.	1.1	2
7	The effect of aging and chronic microglia activation on the morphology and numbers of the cerebellar Purkinje cells. Neuroscience Letters, 2021, 751, 135807.	1.0	9
8	Therapeutic Opportunities for Food Supplements in Neurodegenerative Disease and Depression. Frontiers in Nutrition, 2021, 8, 669846.	1.6	21
9	Spatial Memory and Microglia Activation in a Mouse Model of Chronic Neuroinflammation and the Anti-inflammatory Effects of Apigenin. Frontiers in Neuroscience, 2021, 15, 699329.	1.4	23
10	Synergistic Protective Effect of Curcumin and Resveratrol against Oxidative Stress in Endothelial EAhy926 Cells. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-13.	0.5	14
11	Eupomatenes A – E: Neolignans isolated from the leaves of Australian rainforest plant Eupomatia laurina. Fìtoterapìâ, 2021, 153, 104972.	1.1	3
12	In search of an anti-inflammatory drug for Alzheimer disease. Nature Reviews Neurology, 2020, 16, 131-132.	4.9	35
13	Ternstroenols A – E: Undescribed pentacyclic triterpenoids from the Australian rainforest plant Ternstroemia cherryi. Phytochemistry, 2020, 176, 112426.	1.4	6
14	The reciprocal EC50 value as a convenient measure of the potency of a compound in bioactivity-guided purification of natural products. Fìtoterapìâ, 2020, 143, 104598.	1.1	18
15	Mulgravanols A and B, rare oxidized xanthenes and a new phloroglucinol isolated from the Australian rainforest plant Waterhousea mulgraveana (Myrtaceae). Fìtoterapìâ, 2020, 143, 104595.	1.1	2
16	Evaluation of Phytosomal Curcumin as an Anti-inflammatory Agent for Chronic Glial Activation in the GFAP-IL6 Mouse Model. Frontiers in Neuroscience, 2020, 14, 170.	1.4	25
17	Effects of a solid lipid curcumin particle formulation on chronic activation of microglia and astroglia in the GFAP-IL6 mouse model. Scientific Reports, 2020, 10, 2365.	1.6	20
18	Costatamins A – C, new 4-phenylcoumarins with anti-inflammatory activity from the Australian woodland tree Angophora costata (Myrtaceae). Fìtoterapìâ, 2019, 133, 171-174.	1.1	8

#	Article	IF	CITATIONS
19	A pharmacokinetic assessment of optimal dosing, preparation, and chronotherapy of aspirin in pregnancy. American Journal of Obstetrics and Gynecology, 2019, 221, 255.e1-255.e9.	0.7	24
20	The differential impact of acute microglia activation on the excitability of cholinergic neurons in the mouse medial septum. Brain Structure and Function, 2019, 224, 2297-2309.	1.2	11
21	Chronic Microglial Activation in the GFAP-IL6 Mouse Contributes to Age-Dependent Cerebellar Volume Loss and Impairment in Motor Function. Frontiers in Neuroscience, 2019, 13, 303.	1.4	42
22	Targeting Inflammatory Pathways in Alzheimer's Disease: A Focus on Natural Products and Phytomedicines. CNS Drugs, 2019, 33, 457-480.	2.7	27
23	Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection. Analytical Biochemistry, 2019, 573, 51-66.	1.1	19
24	Influence of the fat/carbohydrate component of snack food on energy intake pattern and reinforcing properties in rodents. Behavioural Brain Research, 2019, 364, 328-333.	1.2	7
25	Assessment of diets containing curcumin, epigallocatechin-3-gallate, docosahexaenoic acid and α-lipoic acid on amyloid load and inflammation in a male transgenic mouse model of Alzheimer's disease: Are combinations more effective?. Neurobiology of Disease, 2019, 124, 505-519.	2.1	36
26	Hydrogen peroxide mediates pro-inflammatory cell-to-cell signaling: a new therapeutic target for inflammation?. Neural Regeneration Research, 2019, 14, 1430.	1.6	25
27	Investigation Into the Effects of Tenilsetam on Markers of Neuroinflammation in GFAP-IL6 Mice. Pharmaceutical Research, 2018, 35, 22.	1.7	11
28	Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. European Journal of Nutrition, 2018, 57, 929-938.	1.8	142
29	A New Anti-inflammatory Phenolic Monosaccharide from the Australian Native Rainforest Plant Elaeocarpus Eumundi. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	1
30	Advanced Glycation End Products and esRAGE Are Associated With Bone Turnover and Incidence of Hip Fracture in Older Men. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4224-4231.	1.8	32
31	Anti-inflammatory activity of prenyl and geranyloxy furanocoumarins from Citrus garrawayi (Rutaceae). Phytochemistry Letters, 2018, 27, 197-202.	0.6	12
32	High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Archives of Toxicology, 2017, 91, 1623-1634.	1.9	94
33	Activation of Macrophages and Microglia by Interferon–γ and Lipopolysaccharide Increases Methylglyoxal Production: A New Mechanism in the Development of Vascular Complications and Cognitive Decline in Type 2 Diabetes Mellitus?. Journal of Alzheimer's Disease, 2017, 59, 467-479.	1.2	17
34	Molecular Anti-inflammatory Mechanisms of Retinoids and Carotenoids in Alzheimer's Disease: a Review of Current Evidence. Journal of Molecular Neuroscience, 2017, 61, 289-304.	1.1	83
35	The Effects of a Normal Rate versus a Slow Intervalled Rate of Oral Nutrient Intake and Intravenous Low Rate Macronutrient Application on Psychophysical Function – Two Pilot Studies. Frontiers in Psychology, 2017, 8, 1031.	1.1	1
36	The Effects of Different Isocaloric Oral Nutrient Solutions on Psychophysical, Metabolic, Cognitive, and Olfactory Function in Young Male Subjects. Frontiers in Psychology, 2017, 8, 1988.	1.1	5

#	Article	IF	CITATIONS
37	Anti-Inflammatory Chemical Profiling of the Australian Rainforest Tree Alphitonia petriei (Rhamnaceae). Molecules, 2016, 21, 1521.	1.7	23
38	Medicinal Plants of the Australian Aboriginal Dharawal People Exhibiting Anti-Inflammatory Activity. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-8.	0.5	24
39	Evidence For and Against a Pathogenic Role of Reduced γ-Secretase Activity in Familial Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 52, 781-799.	1.2	44
40	Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics, 2016, 8, 542-550.	1.0	27
41	Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Scientific Reports, 2016, 6, 31450.	1.6	186
42	Molecular insight into arsenic toxicity via the genome-wide deletion mutant screening of Saccharomyces cerevisiae. Metallomics, 2016, 8, 228-235.	1.0	21
43	Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds. Pharmacological Research, 2016, 103, 80-94.	3.1	78
44	S-allyl-l-cysteine and isoliquiritigenin improve mitochondrial function in cellular models of oxidative and nitrosative stress. Food Chemistry, 2016, 194, 843-848.	4.2	24
45	Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer's disease. Neurochemistry International, 2016, 95, 63-74.	1.9	145
46	Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8–B4 microglia. Neurochemistry International, 2016, 95, 46-54.	1.9	44
47	Plant polyphenols as inhibitors of NF-κB induced cytokine productionââ,¬â€a potential anti-inflammatory treatment for Alzheimer's disease?. Frontiers in Molecular Neuroscience, 2015, 8, 24.	1.4	115
48	Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts – identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds. Food and Function, 2015, 6, 910-919.	2.1	93
49	Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer's disease brain. Neurobiology of Aging, 2015, 36, 753-761.	1.5	65
50	An in vitro study of anti-inflammatory activity of standardised Andrographis paniculata extracts and pure andrographolide. BMC Complementary and Alternative Medicine, 2015, 15, 18.	3.7	41
51	Type 2 Diabetes, Skin Autofluorescence, and Brain Atrophy. Diabetes, 2015, 64, 279-283.	0.3	71
52	Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer′s disease. Neural Regeneration Research, 2015, 10, 1181.	1.6	151
53	Chronic Neuroinflammation in Alzheimer's Disease: New Perspectives on Animal Models and Promising Candidate Drugs. BioMed Research International, 2014, 2014, 1-10.	0.9	88
54	Determination of anti-inflammatory activities of standardised preparations of plant- and mushroom-based foods. European Journal of Nutrition, 2014, 53, 335-343.	1.8	31

#	Article	IF	CITATIONS
55	Bacopamonnieri (L.) exerts anti-inflammatory effects on cells of the innate immune system in vitro. Food and Function, 2014, 5, 517-520.	2.1	18
56	Natural Compounds and Plant Extracts as Therapeutics Against Chronic Inflammation in Alzheimer's Disease – A Translational Perspective. CNS and Neurological Disorders - Drug Targets, 2014, 13, 1175-1191.	0.8	58
57	Proenergetic effects of resveratrol in the murine neuronal cell line Neuro2a. Molecular Nutrition and Food Research, 2013, 57, 1901-1907.	1.5	8
58	Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biology, 2013, 1, 441-445.	3.9	113
59	Chronic Inflammation Alters Production and Release of Glutathione and Related Thiols in Human U373 Astroglial Cells. Cellular and Molecular Neurobiology, 2013, 33, 19-30.	1.7	45
60	Methylglyoxal, Cognitive Function and Cerebral Atrophy in Older People. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 68-73.	1.7	78
61	Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids, 2012, 42, 1221-1236.	1.2	105
62	Advanced glycation endproducts and their receptor RAGE in Alzheimer's disease. Neurobiology of Aging, 2011, 32, 763-777.	1.5	413
63	Activated astroglia during chronic inflammation in Alzheimer's disease—Do they neglect their neurosupportive roles?. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 690, 40-49.	0.4	139
64	Advanced glycation end products as biomarkers and gerontotoxins – A basis to explore methylglyoxal-lowering agents for Alzheimer's disease?. Experimental Gerontology, 2010, 45, 744-751.	1.2	89
65	A Versatile High Throughput Screening System for the Simultaneous Identification of Anti-Inflammatory and Neuroprotective Compounds. Journal of Alzheimer's Disease, 2010, 19, 451-464.	1.2	26
66	Activated astrocytes: a therapeutic target in Alzheimer's disease?. Expert Review of Neurotherapeutics, 2009, 9, 1585-1594.	1.4	73
67	Plantâ€derived polyphenols attenuate lipopolysaccharideâ€induced nitric oxide and tumour necrosis factor production in murine microglia and macrophages. Molecular Nutrition and Food Research, 2008, 52, 427-438.	1.5	64
68	<i>Inflammation and the Redoxâ€sensitive AGE–RAGE Pathway as a Therapeutic Target in Alzheimer's Disease</i> . Annals of the New York Academy of Sciences, 2008, 1126, 147-151.	1.8	57
69	Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease. Advanced Drug Delivery Reviews, 2008, 60, 1463-1470.	6.6	288
70	Induction of novel cytokines and chemokines by advanced glycation endproducts determined with a cytometric bead array. Cytokine, 2008, 41, 198-203.	1.4	49
71	Effect of Pseudophosphorylation and Cross-linking by Lipid Peroxidation and Advanced Glycation End Product Precursors on Tau Aggregation and Filament Formation. Journal of Biological Chemistry, 2007, 282, 6984-6991.	1.6	100
72	Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains. Neurobiology of Aging, 2007, 28, 29-41.	1.5	101

#	Article	IF	CITATIONS
73	Lipoic acid as a novel treatment for Alzheimer's disease and related dementias. , 2007, 113, 154-164.		248
74	Carbonyl stress and NMDA receptor activation contribute to methylglyoxal neurotoxicity. Free Radical Biology and Medicine, 2006, 40, 779-790.	1.3	53
75	Methylglyoxal, Glyoxal, and Their Detoxification in Alzheimer's Disease. Annals of the New York Academy of Sciences, 2005, 1043, 211-216.	1.8	132
76	Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer's disease and link to cognitive impairment. Journal of Neurochemistry, 2005, 92, 255-263.	2.1	199
77	The carbonyl scavengers aminoguanidine and tenilsetam protect against the neurotoxic effects of methylglyoxal. Neurotoxicity Research, 2005, 7, 95-101.	1.3	69
78	Immunochemical crossreactivity of antibodies specific for "advanced glycation endproducts―with "advanced lipoxidation endproducts― Neurobiology of Aging, 2005, 26, 465-474.	1.5	35
79	Age- and Stage-dependent Accumulation of Advanced Glycation End Products in Intracellular Deposits in Normal and Alzheimer's Disease Brains. Cerebral Cortex, 2004, 15, 211-220.	1.6	152
80	Advanced glycation endproducts and pro-inflammatory cytokines in transgenic Tg2576 mice with amyloid plaque pathology. Journal of Neurochemistry, 2004, 86, 283-289.	2.1	39
81	Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells. Experimental Brain Research, 2003, 150, 1-8.	0.7	72
82	Signal transduction pathways in mouse microglia N-11 cells activated by advanced glycation endproducts (AGEs). Journal of Neurochemistry, 2003, 87, 44-55.	2.1	93
83	β-Amyloid peptide potentiates inflammatory responses induced by lipopolysaccharide, interferon -γ and â€ĩadvanced glycation endproducts' in a murine microglia cell line. European Journal of Neuroscience, 2003, 17, 813-821.	1.2	88
84	Advanced Glycation Endproducts Induce Changes in Glucose Consumption, Lactate Production, and ATP Levels in SH-SY5Y Neuroblastoma Cells by a Redox-Sensitive Mechanism. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1307-1313.	2.4	27
85	Advanced glycation endproducts cause lipid peroxidation in the human neuronal cell line SH-SY5Y. Journal of Alzheimer's Disease, 2003, 5, 25-30.	1.2	41
86	Amyloid β-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer's disease brain exists. Journal of Alzheimer's Disease, 2002, 4, 193-201.	1.2	155
87	Aberrant expression of NOS isoforms in Alzheimer's disease is structurally related to nitrotyrosine formation. Brain Research, 2002, 953, 135-143.	1.1	215
88	Advanced glycation endproducts change glutathione redox status in SH-SY5Y human neuroblastoma cells by a hydrogen peroxide dependent mechanism. Neuroscience Letters, 2001, 312, 29-32.	1.0	40
89	Alpha-lipoic acid as a new treatment option for Azheimer type dementia. Archives of Gerontology and Geriatrics, 2001, 32, 275-282.	1.4	158
90	Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia. European Journal of Neuroscience, 2001, 14, 1961-1967.	1.2	100

#	Article	IF	CITATIONS
91	AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs?. Biogerontology, 2001, 2, 19-34.	2.0	110
92	Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer's disease. Brain Research, 2001, 920, 32-40.	1.1	151
93	Transition metal-mediated glycoxidation accelerates cross-linking of β-amyloid peptide. FEBS Journal, 2000, 267, 4171-4178.	0.2	101
94	Amino acid specificity of glycation and protein–AGE crosslinking reactivities determined with a dipeptide SPOT library. Nature Biotechnology, 1999, 17, 1006-1010.	9.4	108
95	Investigations on oxidative stress and therapeutical implications in dementia. European Archives of Psychiatry and Clinical Neuroscience, 1999, 249, S68-S73.	1.8	71
96	Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of β-amyloid peptide. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1997, 1360, 17-29.	1.8	160
97	Advanced glycation endproducts in ageing and Alzheimer's disease. Brain Research Reviews, 1997, 23, 134-143.	9.1	257
98	Identification of a Gs-protein coupling domain to the β-aderenoceptor using site-specific synthetic peptides. FEBS Letters, 1990, 261, 294-298.	1.3	57
99	Mapping of β-adrenoceptor coupling domains to Gs -protein by site-specific synthetic peptides. FEBS Letters, 1989, 254, 89-93.	1.3	67
100	Identification of Nrf2 activators from the roots of Valeriana officinalis. Planta Medica, 0, , .	0.7	0