Qi-Qiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/472857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions. Nature Chemistry, 2016, 8, 225-230.	6.6	262
2	Halide Recognition by Tetraoxacalix[2]arene[2]triazine Receptors: Concurrent Noncovalent Halide–̀ and Loneâ€pair–̀ Interactions in Host–Halide–Water Ternary Complexes. Angewandte Chemie - International Edition, 2008, 47, 7485-7488.	7.2	251
3	Versatile Anionâ€"ï€ Interactions between Halides and a Conformationally Rigid Bis(tetraoxacalix[2]arene[2]triazine) Cage and Their Directing Effect on Molecular Assembly. Chemistry - A European Journal, 2010, 16, 13053-13057.	1.7	137
4	Sulfur, oxygen, and nitrogen mustards: stability and reactivity. Organic and Biomolecular Chemistry, 2012, 10, 8786.	1.5	85
5	Supramolecular Encapsulation of Tetrahedrally Hydrated Guests in a Tetrahedron Host. Angewandte Chemie - International Edition, 2012, 51, 2119-2123.	7.2	84
6	Cage Based Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 3843-3848.	6.6	84
7	Efficient Functionalizations of Heteroatom-Bridged Calix[2]arene[2]triazines on the Larger Rim. Journal of Organic Chemistry, 2007, 72, 3757-3763.	1.7	72
8	Formation and Conformational Conversion of Flattened Partial Cone Oxygen Bridged Calix[2]arene[2]triazines. Organic Letters, 2007, 9, 2847-2850.	2.4	71
9	Artificial Chloride-Selective Channel: Shape and Function Mimic of the ClC Channel Selective Pore. Journal of the American Chemical Society, 2020, 142, 13273-13277.	6.6	64
10	Molecular Barrel by a Hooping Strategy: Synthesis, Structure, and Selective CO ₂ Adsorption Facilitated by Lone Pairâ~l€ Interactions. Journal of the American Chemical Society, 2017, 139, 635-638.	6.6	62
11	Synthesis, Structure and Molecular Recognition of Functionalised Tetraoxacalix[2]arene[2]triazines. Chemistry - A European Journal, 2010, 16, 7265-7275.	1.7	60
12	Synthesis of Tetraazacalix[2]arene[2]triazines:  Tuning the Cavity by the Substituents on the Bridging Nitrogen Atoms. Organic Letters, 2006, 8, 5967-5970.	2.4	56
13	Exploiting Anion–i̇́€ Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angewandte Chemie - International Edition, 2021, 60, 20650-20655.	7.2	55
14	Molecular Thioamide ↔ Iminothiolate Switches for Sulfur Mustards. Inorganic Chemistry, 2012, 51, 760-762.	1.9	53
15	Chemistry and Structure of a Host–Guest Relationship: The Power of NMR and X-ray Diffraction in Tandem. Journal of the American Chemical Society, 2013, 135, 392-399.	6.6	52
16	Synthesis and Structure of Oxacalix[2]arene[2]triazines of an Expanded π-Electron-Deficient Cavity and Their Interactions with Anions. Journal of Organic Chemistry, 2012, 77, 1860-1867.	1.7	50
17	Toward Anionâ^'Ï€ Interactions Directed Self-Assembly with Predesigned Dual Macrocyclic Receptors and Dianions. Journal of the American Chemical Society, 2019, 141, 1118-1125.	6.6	44
18	Substrateâ€Induced Dimerization Assembly of Chiral Macrocycle Catalysts toward Cooperative Asymmetric Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2623-2627.	7.2	43

QI-QIANG WANG

#	Article	IF	CITATIONS
19	Chiral Macrocycleâ€Enabled Counteranion Trapping for Boosting Highly Efficient and Enantioselective Catalysis. Angewandte Chemie - International Edition, 2020, 59, 10894-10898.	7.2	42
20	Chemical Mustard Containment Using Simple Palladium Pincer Complexes: The Influence of Molecular Walls. Journal of the American Chemical Society, 2013, 135, 17193-17199.	6.6	41
21	Oxacalix[2]arene[2]triazine based ion-pair transporters. Organic and Biomolecular Chemistry, 2016, 14, 330-334.	1.5	35
22	Anionic Head Containing Oxacalix[2]arene[2]triazines: Synthesis and Anionâ^'Ï€-Directed Self-Assembly in Solution and Solid State. Organic Letters, 2017, 19, 738-741.	2.4	34
23	Fe-Catalyzed decarbonylative alkylation–peroxidation of alkenes with aliphatic aldehydes and hydroperoxide under mild conditions. Green Chemistry, 2019, 21, 269-274.	4.6	34
24	Fe-Catalyzed radical-type difunctionalization of styrenes with aliphatic aldehydes and trimethylsilyl azide <i>via</i> a decarbonylative alkylation–azidation cascade. Organic and Biomolecular Chemistry, 2017, 15, 9987-9991.	1.5	33
25	Diversityâ€Oriented Construction and Interconversion of Multicavity Supermacrocycles for Cooperative Anion–π Binding. Angewandte Chemie - International Edition, 2018, 57, 15827-15831.	7.2	33
26	Anion Transporters Based on Noncovalent Balance including Anionâ^ï€, Hydrogen, and Halogen Bonding. Journal of Organic Chemistry, 2019, 84, 8859-8869.	1.7	33
27	Chirality Gearing in an Achiral Cage through Adaptive Binding. Journal of the American Chemical Society, 2022, 144, 6180-6184.	6.6	33
28	Benzene Triimide Cage as a Selective Container of Azide. Organic Letters, 2019, 21, 7158-7162.	2.4	31
29	Tunable, shape-shifting capsule for dicarboxylates. Chemical Science, 2011, 2, 1735.	3.7	28
30	Designed self-assemblies based on cooperative noncovalent interactions including anion–π, lone-pair electron–π and hydrogen bonding. RSC Advances, 2014, 4, 9339.	1.7	28
31	Metal-free decarbonylative alkylation–aminoxidation of styrene derivatives with aliphatic aldehydes and N-hydroxyphthalimide. Organic and Biomolecular Chemistry, 2017, 15, 1338-1342.	1.5	27
32	Chelate effects in sulfate binding by amide/urea-based ligands. Organic and Biomolecular Chemistry, 2015, 13, 6953-6957.	1.5	26
33	Macrocycleâ€Enabled Counteranion Trapping for Improved Catalytic Efficiency. Chemistry - A European Journal, 2018, 24, 4268-4272.	1.7	21
34	Magnetic Multistability in an Anionâ€Radical Pimer. Angewandte Chemie - International Edition, 2020, 59, 14040-14043.	7.2	21
35	Naphthalene-Pillared Benzene Triimide Cage: An Efficient Receptor for Polyhedral Anions and a General Tool for Probing Theoretically-Existing Anion-ï€ Binding Motifs. CCS Chemistry, 2022, 4, 2806-2815.	4.6	19
36	Putting Anionâ€i€ Interactions at Work for Catalysis. Chemistry - A European Journal, 2022, 28, .	1.7	19

QI-QIANG WANG

#	Article	IF	CITATIONS
37	Tritopic ion-pair receptors based on anion–π interactions for selective CaX ₂ binding. Dalton Transactions, 2018, 47, 7883-7887.	1.6	17
38	Reversal and Amplification of the Enantioselectivity of Biocatalytic Desymmetrization toward Meso Heterocyclic Dicarboxamides Enabled by Rational Engineering of Amidase. ACS Catalysis, 2021, 11, 6900-6907.	5.5	16
39	Anionâ^ï̃€-Directed Self-Assembly between Di- and Trisulfonates and a Rigid Molecular Cage with Three Electron-Deficient V-Clefts. Inorganic Chemistry, 2019, 58, 5980-5987.	1.9	15
40	Substrateâ€Induced Dimerization Assembly of Chiral Macrocycle Catalysts toward Cooperative Asymmetric Catalysis. Angewandte Chemie, 2020, 132, 2645-2649.	1.6	14
41	Hexagonal molecular "palladawheel― Chemical Communications, 2013, 49, 8042.	2.2	13
42	Vesicles Constructed with Chiral Amphiphilic Oxacalix[2]arene[2]triazine Derivatives for Enantioselective Recognition of Organic Anions. ACS Applied Materials & Interfaces, 2018, 10, 3181-3185.	4.0	13
43	Macrocycleâ€Directed Construction of Tetrahedral Anion–π Receptors for Nesting Anions with Complementary Geometry. Chemistry - A European Journal, 2019, 25, 13275-13279.	1.7	12
44	Xenon binding by a tight yet adaptive chiral soft capsule. Nature Communications, 2020, 11, 6257.	5.8	12
45	Chiral macrocycle-induced circularly polarized luminescence of a twisted intramolecular charge transfer dye. Chemical Communications, 2021, 57, 13554-13557.	2.2	12
46	Design, structure and anion recognition of larger-rim functionalized oxacalix[2]arene[2]triazine hosts. Tetrahedron Letters, 2014, 55, 3172-3175.	0.7	11
47	Benzene Triimides: Facile Synthesis and Selfâ€Assembly Study. Chinese Journal of Chemistry, 2019, 37, 684-688.	2.6	10
48	Chiral Macrocycleâ€Enabled Counteranion Trapping for Boosting Highly Efficient and Enantioselective Catalysis. Angewandte Chemie, 2020, 132, 10986-10990.	1.6	10
49	Enantioselective biocatalytic desymmetrization for synthesis of enantiopure cis-3,4-disubstituted pyrrolidines. Green Synthesis and Catalysis, 2021, 2, 324-327.	3.7	10
50	Ï€â€Face Promoted Catalysis in Water: From Electronâ€deficient Molecular Cages to Single Aromatic Slides. Chemistry - an Asian Journal, 2021, 16, 3599-3603.	1.7	10
51	Adlayer Structures of Aza- and/or Oxo-Bridged Calix[2]arene[2]triazines on Au(111) Investigated by Scanning Tunneling Microscopy (STM). Langmuir, 2007, 23, 8021-8027.	1.6	8
52	Alfred Werner's expanded legacy: Anion and metal ion coordination in an unsymmetrical, octaamido cryptand. Polyhedron, 2013, 52, 515-523.	1.0	8
53	Diversityâ€Oriented Construction and Interconversion of Multicavity Supermacrocycles for Cooperative Anion–΀ Binding. Angewandte Chemie, 2018, 130, 16053-16057.	1.6	8
54	Biocatalytic Desymmetrization of Prochiral 3â€Aryl and 3â€Arylmethyl Glutaramides: Different Remote Substituent Effect on Catalytic Efficiency and Enantioselectivity. Advanced Synthesis and Catalysis, 2018, 360, 4594-4603.	2.1	8

QI-QIANG WANG

#	Article	IF	CITATIONS
55	Highly efficient biocatalytic desymmetrization of <i>meso</i> carbocyclic 1,3-dicarboxamides: a versatile route for enantiopure 1,3-disubstituted cyclohexanes and cyclopentanes. Organic Chemistry Frontiers, 2019, 6, 808-812.	2.3	8
56	Exploiting Anion–π Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angewandte Chemie, 2021, 133, 20818-20823.	1.6	8
57	Biocatalytic Desymmetrization of Dinitriles in Organic Synthesis. Chinese Journal of Organic Chemistry, 2016, 36, 2333.	0.6	8
58	Macrocyclic Influences in CO ₂ Uptake and Stabilization. Organic Letters, 2014, 16, 3982-3985.	2.4	7
59	Conformational Control of Oxacalix[3]arene[3]triazine with Anionâ^'Ï€ Interactions. Crystal Growth and Design, 2018, 18, 2707-2711.	1.4	7
60	Synthesis of carboxylate head-containing self-complementary building units and their anion-Ï€ directed self-assembly. Supramolecular Chemistry, 2018, 30, 568-574.	1.5	7
61	Modification of the Enantioselectivity of Biocatalytic <i>meso</i> â€Desymmetrization for Synthesis of Both Enantiomers of <i>cis</i> â€1,2â€Disubstituted Cyclohexane by Amidase Engineering. Advanced Synthesis and Catalysis, 2021, 363, 4538-4543.	2.1	7
62	π-Pimer, π-Dimer, π-Trimer, and 1D π-Stacks in a Series of Benzene Triimide Radical Anions: Substituent-Modulated π Interactions and Physical Properties in Crystalline State. CCS Chemistry, 2023, 5, 1343-1352.	4.6	7
63	Multiresponsive Vesicles Composed of Amphiphilic Azacalix[4]pyridine Derivatives. ACS Applied Materials & Interfaces, 2017, 9, 10378-10382.	4.0	6
64	Cation-chloride cotransport mediated by an ion pair transporter. Organic and Biomolecular Chemistry, 2021, 19, 8586-8590.	1.5	5
65	Triazine- and Binaphthol-Based Chiral Macrocycles and Cages: Synthesis, Structure, and Solid-State Assembly. Journal of Organic Chemistry, 2022, 87, 3491-3497.	1.7	5
66	Oxacalix[2]arene[2]triazine Derivatives with Halogen Bond Donors: Synthesis, Structure, and Halide Binding in the Solid State. Crystal Growth and Design, 2016, 16, 5460-5465.	1.4	4
67	Synthesis, Structure, Property, and Dinuclear Cu(II) Complexation of Tetraoxacalix[2]arene[2]phenanthrolines. Inorganic Chemistry, 2018, 57, 13461-13469.	1.9	4
68	Synthesis and structure of N-methylated azacalix[4]pyridines and azacalix[1]arene[3]pyridines. Tetrahedron Letters, 2017, 58, 3708-3711.	0.7	3
69	Bioinspired tetraamino-bisthiourea chiral macrocycles in catalyzing decarboxylative Mannich reactions. Beilstein Journal of Organic Chemistry, 0, 18, 486-496.	1.3	3
70	Supramolecular Catalysis Using Organic Macrocycles. , 2019, , 1-47.		2
71	Enhancement of Ion Pairing of Sr(II) and Ba(II) Salts by a Tritopic Ionâ€Pair Receptor in Solution. ChemPhysChem, 2020, 21, 1957-1965.	1.0	2
72	Frontispiz: Exploiting Anion–π Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angewandte Chemie, 2021, 133, .	1.6	0

0

#	Article	IF	CITATIONS
73	Frontispiece: Exploiting Anion–ľ€ Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0

54 Supramolecular Catalysis Using Organic Macrocycles. , 2020, , 829-875.

6