Zhongliang Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4728243/publications.pdf

Version: 2024-02-01

1.2	102	1478505	1125743
13	183	6	13
papers	citations	h-index	g-index
14	14	14	108
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries. lonics, 2022, 28, 15-26.	2.4	26
2	Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles. Journal of Electronic Materials, 2022, 51, 30-46.	2.2	56
3	Highly Selective Adsorption and Recovery of Palladium from Spent Catalyst Wastewater by 1,4,7,10-Tetraazacyclododecane-Modified Mesoporous Silica. ACS Sustainable Chemistry and Engineering, 2022, 10, 1103-1114.	6.7	18
4	Dual-modification of WO3-coating and Mg-doping on LiNi0.8Co0.1Mn0.1O2 cathodes for enhanced electrochemical performance at high voltage. lonics, 2021, 27, 1909-1917.	2.4	5
5	Core-shell structure LiNi0.8Co0.1Mn0.1O2 cathode material with improved electrochemical performance at high voltage. Ionics, 2021, 27, 949-959.	2.4	7
6	Mesoporous Si/C composite anode material: experiments and first-principles calculations. Ionics, 2020, 26, 589-599.	2.4	6
7	Thermo-electrochemical study of co-modified Li2O-2B2O3-(LiNi0.5Co0.2Mn0.3)0.98Zr0.02O2 cathode material. Ionics, 2020, 26, 673-681.	2.4	2
8	Enhanced electrochemical properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 by SnO2 coating under high cutoff voltage. Ionics, 2020, 26, 2681-2688.	2.4	9
9	Research Progress on the Surface of High-Nickel Nickel–Cobalt–Manganese Ternary Cathode Materials: A Mini Review. Frontiers in Chemistry, 2020, 8, 761.	3.6	38
10	Analysis of the application of lithium ion battery in the intelligent digital display. Ionics, 2020, 26, 3969-3977.	2.4	1
11	Syntheses and fluorescent properties of complexes of Eu(III) with HTTA, TPPO and benzoic acid. Journal of Rare Earths, 2009, 27, 368-371.	4.8	4
12	Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite. Thermochimica Acta, 2005, 436, 10-14.	2.7	4
13	Calorimetric studies on leaching of mechanically activated sphalerite in FeCl3 solution. Thermochimica Acta, 2004, 416, 5-9.	2.7	7