Dyoni M De Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4727614/publications.pdf

Version: 2024-02-01

25 papers 1,166 citations

623734 14 h-index 642732 23 g-index

26 all docs

26 does citations

26 times ranked 1683 citing authors

#	Article	IF	CITATIONS
1	Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 2015, 13, 1224-1232.	8.3	210
2	The Acetyl Bromide Method Is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE, 2014, 9, e110000.	2.5	205
3	Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochemistry Reviews, 2020, 19, 865-906.	6.5	182
4	Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology, 2019, 278, 408-423.	9.6	90
5	Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 2020, 43, 2172-2191.	5 . 7	79
6	Increased Gibberellins and Light Levels Promotes Cell Wall Thickness and Enhance Lignin Deposition in Xylem Fibers. Frontiers in Plant Science, 2018, 9, 1391.	3.6	59
7	Plant cell wall composition and enzymatic deconstruction. AlMS Bioengineering, 2018, 5, 63-77.	1.1	56
8	Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Industrial Crops and Products, 2019, 140, 111657.	5.2	47
9	Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renewable Energy, 2020, 147, 2206-2217.	8.9	38
10	Cloning, heterologous expression and biochemical characterization of a non-specific endoglucanase family 12 from Aspergillus terreus NIH2624. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 395-403.	2.3	32
11	Inhibition of Zea mays coniferyl aldehyde dehydrogenase by daidzin: A potential approach for the investigation of lignocellulose recalcitrance. Process Biochemistry, 2020, 90, 131-138.	3.7	30
12	Suppression of a BAHD acyltransferase decreases <i>p</i> àê€oumaroyl on arabinoxylan and improves biomass digestibility in the model grass <i>Setaria viridis</i> . Plant Journal, 2021, 105, 136-150.	5.7	27
13	Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize. Plant Physiology and Biochemistry, 2019, 142, 275-282.	5 . 8	16
14	Design of experiments driven optimization of alkaline pretreatment and saccharification for sugarcane bagasse. Bioresource Technology, 2021, 321, 124499.	9.6	16
15	Designing xylan for improved sustainable biofuel production. Plant Biotechnology Journal, 2019, 17, 2225-2227.	8.3	15
16	Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth. Plant Physiology and Biochemistry, 2021, 159, 335-346.	5.8	14
17	Modulation of cellulase activity by lignin-related compounds. Bioresource Technology Reports, 2020, 10, 100390.	2.7	11
18	Feruloyl esterase from Aspergillus clavatus improves xylan hydrolysis of sugarcane bagasse. AIMS Bioengineering, 2016, 4, 1-11.	1.1	9

#	Article	IF	CITATIONS
19	Lignin-induced growth inhibition in soybean exposed to iron oxide nanoparticles. Chemosphere, 2018, 211, 226-234.	8.2	8
20	The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency. Biomass Conversion and Biorefinery, 2023, 13, 2497-2515.	4.6	8
21	Feruloyl esterase activity and its role in regulating the feruloylation of maize cell walls. Plant Physiology and Biochemistry, 2020, 156, 49-54.	5.8	6
22	Ten Simple Rules for Developing a Successful Research Proposal in Brazil. PLoS Computational Biology, 2017, 13, e1005289.	3.2	3
23	Phenolic Compounds in Plants: Implications for Bioenergy. , 2017, , 39-52.		2
24	Inhibiting tricin biosynthesis improves maize lignocellulose saccharification. Plant Physiology and Biochemistry, 2022, 178, 12-19.	5.8	2
25	Sustainable production of succinic acid and 3-hydroxypropionic acid from renewable feedstocks. , 2022, , 367-386.		1