Guy Caljon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4727230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Sequence of the Tsetse Fly (<i>Glossina morsitans</i>): Vector of African Trypanosomiasis. Science, 2014, 344, 380-386.	6.0	254
2	The Dermis as a Delivery Site of Trypanosoma brucei for Tsetse Flies. PLoS Pathogens, 2016, 12, e1005744.	2.1	126
3	Trypanosoma brucei Modifies the Tsetse Salivary Composition, Altering the Fly Feeding Behavior That Favors Parasite Transmission. PLoS Pathogens, 2010, 6, e1000926.	2.1	91
4	Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes. PLoS ONE, 2016, 11, e0154101.	1.1	80
5	Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microbial Cell Factories, 2014, 13, 156.	1.9	72
6	Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Frontiers in Immunology, 2016, 7, 233.	2.2	72
7	Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biology, 2019, 20, 187.	3.8	71
8	T. brucei Infection Reduces B Lymphopoiesis in Bone Marrow and Truncates Compensatory Splenic Lymphopoiesis through Transitional B-Cell Apoptosis. PLoS Pathogens, 2011, 7, e1002089.	2.1	67
9	Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microbial Cell Factories, 2012, 11, 23.	1.9	65
10	Tsetse Fly Saliva Accelerates the Onset of Trypanosoma brucei Infection in a Mouse Model Associated with a Reduced Host Inflammatory Response. Infection and Immunity, 2006, 74, 6324-6330.	1.0	58
11	High Affinity Nanobodies against the Trypanosome brucei VSG Are Potent Trypanolytic Agents that Block Endocytosis. PLoS Pathogens, 2011, 7, e1002072.	2.1	58
12	Paternal Transmission of a Secondary Symbiont during Mating in the Viviparous Tsetse Fly. Molecular Biology and Evolution, 2015, 32, 1977-1980.	3.5	52
13	Evaluating drug resistance in visceral leishmaniasis: the challenges. Parasitology, 2018, 145, 453-463.	0.7	51
14	Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment. International Journal for Parasitology, 2006, 36, 1025-1035.	1.3	50
15	Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat late-stage sleeping sickness. Nature Communications, 2019, 10, 5564.	5.8	49
16	A Trypanosoma brucei Kinesin Heavy Chain Promotes Parasite Growth by Triggering Host Arginase Activity. PLoS Pathogens, 2013, 9, e1003731.	2.1	48
17	Identification of a Tsetse Fly Salivary Protein with Dual Inhibitory Action on Human Platelet Aggregation. PLoS ONE, 2010, 5, e9671.	1.1	46
18	Current status of vaccination against African trypanosomiasis. Parasitology, 2010, 137, 2017-2027.	0.7	46

#	Article	IF	CITATIONS
19	MIF Contributes to Trypanosoma brucei Associated Immunopathogenicity Development. PLoS Pathogens, 2014, 10, e1004414.	2.1	45
20	Using microdialysis to analyse the passage of monovalent nanobodies through the blood–brain barrier. British Journal of Pharmacology, 2012, 165, 2341-2353.	2.7	42
21	The Central Role of Macrophages in Trypanosomiasis-Associated Anemia:Rationale for Therapeutical Approaches. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2010, 10, 71-82.	0.6	40
22	Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity. European Journal of Medicinal Chemistry, 2019, 164, 689-705.	2.6	40
23	Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland. BMC Genomics, 2016, 17, 971.	1.2	38
24	In vitro and in vivo pharmacodynamics of three novel antileishmanial lead series. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 81-86.	1.4	38
25	Optimization and Characterization of a Galleria mellonella Larval Infection Model for Virulence Studies and the Evaluation of Therapeutics Against Streptococcus pneumoniae. Frontiers in Microbiology, 2019, 10, 311.	1.5	38
26	Discovery of Novel 7-Aryl 7-Deazapurine 3′-Deoxy-ribofuranosyl Nucleosides with Potent Activity against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2018, 61, 9287-9300.	2.9	37
27	Identification of a functional Antigen5-related allergen in the saliva of a blood feeding insect, the tsetse fly. Insect Biochemistry and Molecular Biology, 2009, 39, 332-341.	1.2	36
28	Mouse models for pathogenic African trypanosomes: unravelling the immunology of host–parasite–vector interactions. Parasite Immunology, 2011, 33, 423-429.	0.7	35
29	Macromolecular biosynthetic parameters and metabolic profile in different life stages of Leishmania braziliensis: Amastigotes as a functionally less active stage. PLoS ONE, 2017, 12, e0180532.	1.1	35
30	Control of Experimental Trypanosoma brucei Infections Occurs Independently of Lymphotoxin- $\hat{l}\pm$ Induction. Infection and Immunity, 2002, 70, 1342-1351.	1.0	33
31	The Glossina morsitans tsetse fly saliva: General characteristics and identification of novel salivary proteins. Insect Biochemistry and Molecular Biology, 2007, 37, 1075-1085.	1.2	33
32	Neutrophils enhance early Trypanosoma brucei infection onset. Scientific Reports, 2018, 8, 11203.	1.6	33
33	Need for sustainable approaches in antileishmanial drug discovery. Parasitology Research, 2019, 118, 2743-2752.	0.6	33
34	C6–O-alkylated 7-deazainosine nucleoside analogues: Discovery of potent and selective anti-sleeping sickness agents. European Journal of Medicinal Chemistry, 2020, 188, 112018.	2.6	33
35	DNDI-6148: A Novel Benzoxaborole Preclinical Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2021, 64, 16159-16176.	2.9	31
36	Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Neglected Tropical Diseases, 2017, 11, e0005620.	1.3	28

#	Article	IF	CITATIONS
37	Alice in microbes' land: adaptations and counter-adaptations of vector-borne parasitic protozoa and their hosts. FEMS Microbiology Reviews, 2016, 40, 664-685.	3.9	24
38	Miltefosine enhances the fitness of a non-virulent drug-resistant <i>Leishmania infantum</i> strain. Journal of Antimicrobial Chemotherapy, 2019, 74, 395-406.	1.3	23
39	<i>In vitro</i> â€~time-to-kill' assay to assess the cidal activity dynamics of current reference drugs against <i>Leishmania donovani</i> and <i>Leishmania infantum</i> . Journal of Antimicrobial Chemotherapy, 2017, 72, 428-430.	1.3	21
40	Discovery of Pyrrolo[2,3- <i>b</i>]pyridine (1,7-Dideazapurine) Nucleoside Analogues as Anti- <i>Trypanosoma cruzi</i> Agents. Journal of Medicinal Chemistry, 2019, 62, 8847-8865.	2.9	21
41	MIF-Mediated Hemodilution Promotes Pathogenic Anemia in Experimental African Trypanosomosis. PLoS Pathogens, 2016, 12, e1005862.	2.1	20
42	Evaluation of a Pan-Leishmania Spliced-Leader RNA Detection Method in Human Blood and Experimentally Infected Syrian Golden Hamsters. Journal of Molecular Diagnostics, 2018, 20, 253-263.	1.2	20
43	Acyloxybenzyl and Alkoxyalkyl Prodrugs of a Fosmidomycin Surrogate as Antimalarial and Antitubercular Agents. ACS Medicinal Chemistry Letters, 2018, 9, 986-989.	1.3	20
44	Amino acid based prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorganic and Medicinal Chemistry, 2019, 27, 729-747.	1.4	20
45	Structure–Activity Relationship Exploration of 3â€2-Deoxy-7-deazapurine Nucleoside Analogues as Anti- <i>Trypanosoma brucei</i> Agents. ACS Infectious Diseases, 2020, 6, 2045-2056.	1.8	20
46	Streptococcus pneumoniae galU gene mutation has a direct effect on biofilm growth, adherence and phagocytosis in vitro and pathogenicity in vivo. Pathogens and Disease, 2018, 76, .	0.8	19
47	Revisiting Pyrazolo[3,4- <i>d</i>]pyrimidine Nucleosides as Anti- <i>Trypanosoma cruzi</i> and Antileishmanial Agents. Journal of Medicinal Chemistry, 2021, 64, 4206-4238.	2.9	19
48	Naloxonazine, an Amastigote-Specific Compound, Affects Leishmania Parasites through Modulation of Host-Encoded Functions. PLoS Neglected Tropical Diseases, 2016, 10, e0005234.	1.3	18
49	Nanobodies As Tools to Understand, Diagnose, and Treat African Trypanosomiasis. Frontiers in Immunology, 2017, 8, 724.	2.2	17
50	Impact of primary mouse macrophage cell types on Leishmania infection and in vitro drug susceptibility. Parasitology Research, 2018, 117, 3601-3612.	0.6	17
51	Cyclic Nucleotide-Specific Phosphodiesterases as Potential Drug Targets for Anti-Leishmania Therapy. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	17
52	Characterization of the role of N-glycosylation sites in the respiratory syncytial virus fusion protein in virus replication, syncytium formation and antigenicity. Virus Research, 2019, 266, 58-68.	1.1	17
53	A novel serine protease inhibitor as potential treatment for dry eye syndrome and ocular inflammation. Scientific Reports, 2020, 10, 17268.	1.6	16
54	Synthesis and Structureâ^'Activity Relationships of Imidazopyridine/Pyrimidine―and Furopyridineâ€Based Antiâ€infective Agents against Trypanosomiases. ChemMedChem, 2021, 16, 966-975.	1.6	16

#	Article	IF	CITATIONS
55	Novel triazine dimers with potent antitrypanosomal activity. European Journal of Medicinal Chemistry, 2018, 143, 306-319.	2.6	16
56	Affinity Is an Important Determinant of the Anti-Trypanosome Activity of Nanobodies. PLoS Neglected Tropical Diseases, 2012, 6, e1902.	1.3	15
57	Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity. PLoS ONE, 2012, 7, e47233.	1.1	15
58	Options for the delivery of anti-pathogen molecules in arthropod vectors. Journal of Invertebrate Pathology, 2013, 112, S75-S82.	1.5	15
59	Description of a Nanobody-based Competitive Immunoassay to Detect Tsetse Fly Exposure. PLoS Neglected Tropical Diseases, 2015, 9, e0003456.	1.3	15
60	In-depth comparison of cell-based methodological approaches to determine drug susceptibility of visceral Leishmania isolates. PLoS Neglected Tropical Diseases, 2019, 13, e0007885.	1.3	15
61	Impact of clinically acquired miltefosine resistance by Leishmania infantum on mouse and sand fly infection. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 13, 16-21.	1.4	15
62	Synthesis and in vitro investigation of halogenated 1,3â€bis(4â€nitrophenyl)triazenide salts as antitubercular compounds. Chemical Biology and Drug Design, 2018, 91, 631-640.	1.5	14
63	Evaluation of conventional and four real-time PCR methods for the detection of Leishmania on field-collected samples in Ethiopia. PLoS Neglected Tropical Diseases, 2021, 15, e0008903.	1.3	14
64	Synthesis and evaluation of a collection of purine-like C-nucleosides as antikinetoplastid agents. European Journal of Medicinal Chemistry, 2021, 212, 113101.	2.6	14
65	Synthesis and evaluation of 3′-fluorinated 7-deazapurine nucleosides as antikinetoplastid agents. European Journal of Medicinal Chemistry, 2021, 216, 113290.	2.6	14
66	Respiratory syncytial virus (RSV) entry is inhibited by serine protease inhibitor AEBSF when present during an early stage of infection. Virology Journal, 2017, 14, 157.	1.4	13
67	Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 3998-4012.	1.4	13
68	Sand Fly Studies Predict Transmission Potential of Drug-resistant Leishmania. Trends in Parasitology, 2020, 36, 785-795.	1.5	13
69	Feeding behavior and activity of Phlebotomus pedifer and potential reservoir hosts of Leishmania aethiopica in southwestern Ethiopia. PLoS Neglected Tropical Diseases, 2020, 14, e0007947.	1.3	13
70	Antibody-Induced Internalization of the Human Respiratory Syncytial Virus Fusion Protein. Journal of Virology, 2017, 91, .	1.5	12
71	Removal of the N-Glycosylation Sequon at Position N116 Located in p27 of the Respiratory Syncytial Virus Fusion Protein Elicits Enhanced Antibody Responses after DNA Immunization. Viruses, 2018, 10, 426.	1.5	12
72	A Critical Blimp-1-Dependent IL-10 Regulatory Pathway in T Cells Protects From a Lethal Pro-inflammatory Cytokine Storm During Acute Experimental Trypanosoma brucei Infection. Frontiers in Immunology, 2020, 11, 1085.	2.2	12

#	Article	IF	CITATIONS
73	Miltefosine enhances infectivity of a miltefosine-resistant Leishmania infantum strain by attenuating its innate immune recognition. PLoS Neglected Tropical Diseases, 2021, 15, e0009622.	1.3	12
74	Long-term hematopoietic stem cells as a parasite niche during treatment failure in visceral leishmaniasis. Communications Biology, 2022, 5, .	2.0	12
75	Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors (Part 2). Bioorganic and Medicinal Chemistry, 2019, 27, 4013-4029.	1.4	11
76	Transmission potential of paromomycin-resistant Leishmania infantum and Leishmania donovani. Journal of Antimicrobial Chemotherapy, 2020, 75, 951-957.	1.3	11
77	Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms, 2020, 8, 950.	1.6	11
78	Phenotypic adaptations of Leishmania donovani to recurrent miltefosine exposure and impact on sand fly infection. Parasites and Vectors, 2020, 13, 96.	1.0	11
79	Antimicrobial and antiprotozoal activities of silver coordination polymers derived from the asymmetric halogenated Schiff base ligands. Applied Organometallic Chemistry, 2021, 35, e6079.	1.7	11
80	Pharmacological Assessment of the Antiprotozoal Activity, Cytotoxicity and Genotoxicity of Medicinal Plants Used in the Treatment of Malaria in the Greater Mpigi Region in Uganda. Frontiers in Pharmacology, 2021, 12, 678535.	1.6	11
81	Monoclonal antibody binding to the macrophage-specific receptor sialoadhesin alters the phagocytic properties of human and mouse macrophages. Cellular Immunology, 2017, 312, 51-60.	1.4	10
82	Miltefosine-resistant Leishmania infantum strains with an impaired MT/ROS3 transporter complex retain amphotericin B susceptibility. Journal of Antimicrobial Chemotherapy, 2018, 73, 392-394.	1.3	10
83	The synthesis and inÂvitro biological evaluation of novel fluorinated tetrahydrobenzo[j]phenanthridine-7,12-diones against Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 2019, 181, 111549.	2.6	10
84	An Unbiased Immunization Strategy Results in the Identification of Enolase as a Potential Marker for Nanobody-Based Detection of Trypanosoma evansi. Vaccines, 2020, 8, 415.	2.1	10
85	Synthesis and structure activity relationships of cyanopyridone based anti-tuberculosis agents. European Journal of Medicinal Chemistry, 2020, 201, 112450.	2.6	10
86	2-((3,5-Dinitrobenzyl)thio)quinazolinones: Potent Antimycobacterial Agents Activated by Deazaflavin (F ₄₂₀)-Dependent Nitroreductase (Ddn). Journal of Medicinal Chemistry, 2021, 64, 440-457.	2.9	10
87	6â€Methylâ€7â€Arylâ€7â€Deazapurine Nucleosides as Anti―Trypanosoma cruzi Agents: Structureâ€Activity Relationship and inâ€vivo Efficacy. ChemMedChem, 2021, 16, 2231-2253.	1.6	10
88	Inflammation following trypanosome infection and persistence in the skin. Current Opinion in Immunology, 2020, 66, 65-73.	2.4	10
89	Impaired development of a miltefosine-resistant Leishmania infantum strain in the sand fly vectors Phlebotomus perniciosus and Lutzomyia longipalpis. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 1-7.	1.4	9
90	In Vitro Growth Inhibition Assays of Leishmania spp Methods in Molecular Biology, 2020, 2116, 791-800.	0.4	9

#	Article	IF	CITATIONS
91	Experimental African Trypanosome Infection by Needle Passage or Natural Tsetse Fly Challenge Thwarts the Development of Collagen-Induced Arthritis in DBA/1 Prone Mice via an Impairment of Antigen Specific B Cell Autoantibody Titers. PLoS ONE, 2015, 10, e0130431.	1.1	9
92	Nucleoside analogues for the treatment of animal trypanosomiasis. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 19, 21-30.	1.4	9
93	Isolation and Characterization of Clinical RSV Isolates in Belgium during the Winters of 2016–2018. Viruses, 2019, 11, 1031.	1.5	8
94	Antileishmanial Aminopyrazoles: Studies into Mechanisms and Stability of Experimental Drug Resistance. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	8
95	Evaluation of a pan-Leishmania SL RNA qPCR assay for parasite detection in laboratory-reared and field-collected sand flies and reservoir hosts. Parasites and Vectors, 2020, 13, 276.	1.0	8
96	2-aminobenzimidazoles for leishmaniasis: From initial hit discovery to in vivo profiling. PLoS Neglected Tropical Diseases, 2021, 15, e0009196.	1.3	8
97	4E Interacting Protein as a Potential Novel Drug Target for Nucleoside Analogues in Trypanosoma brucei. Microorganisms, 2021, 9, 826.	1.6	8
98	Identification of Resistance Determinants for a Promising Antileishmanial Oxaborole Series. Microorganisms, 2021, 9, 1408.	1.6	8
99	Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines. Immunobiology, 2017, 222, 797-806.	0.8	7
100	Experimental Selection of Paromomycin Resistance in Leishmania donovani Amastigotes Induces Variable Genomic Polymorphisms. Microorganisms, 2021, 9, 1546.	1.6	7
101	7-Aryl-7-deazapurine 3â€2-deoxyribonucleoside derivative as a novel lead for Chagas' disease therapy: <i>in vitro</i> and <i>in vivo</i> pharmacology. JAC-Antimicrobial Resistance, 2021, 3, dlab168.	0.9	7
102	N-modification of 7-Deazapurine nucleoside analogues as Anti-Trypanosoma cruzi and anti-Leishmania agents: Structure-activity relationship exploration and InÂvivo evaluation. European Journal of Medicinal Chemistry, 2022, 231, 114165.	2.6	7
103	Molecular detection of infection homogeneity and impact of miltefosine treatment in a Syrian golden hamster model of Leishmania donovani and L. infantum visceral leishmaniasis. Parasitology Research, 2016, 115, 4061-4070.	0.6	6
104	Optimization of the pharmacokinetic properties of potent anti-trypanosomal triazine derivatives. European Journal of Medicinal Chemistry, 2018, 151, 18-26.	2.6	6
105	Double prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1232-1235.	1.0	6
106	6-Methyl-7-deazapurine nucleoside analogues as broad-spectrum antikinetoplastid agents. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17, 57-66.	1.4	6
107	Hit-to-lead optimization of a benzene sulfonamide series for potential antileishmanial agents. RSC Medicinal Chemistry, 2020, 11, 1267-1274.	1.7	5
108	Structureâ€Activity Relationship of Phenylpyrazolones against Trypanosoma cruzi. ChemMedChem, 2020, 15, 1310-1321.	1.6	5

#	Article	IF	CITATIONS
109	Discovery of Diaryl Ether Substituted Tetrahydrophthalazinones as TbrPDEB1 Inhibitors Following Structure-Based Virtual Screening. Frontiers in Chemistry, 2020, 8, 608030.	1.8	5
110	Antiplasmodial activity of constituents and their metabolites after in vitro gastrointestinal biotransformation of a Nauclea pobeguinii extract. Phytochemistry, 2022, 194, 113029.	1.4	5
111	3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 19, 47-55.	1.4	5
112	Functional Analysis of the Twin-Arginine Translocation Pathway in Sodalis glossinidius , a Bacterial Symbiont of the Tsetse Fly. Applied and Environmental Microbiology, 2011, 77, 1132-1134.	1.4	4
113	Serological Responses and Biomarker Evaluation in Mice and Pigs Exposed to Tsetse Fly Bites. PLoS Neglected Tropical Diseases, 2014, 8, e2911.	1.3	4
114	Identification of Phenylphthalazinones as a New Class of <i>Leishmania infantum</i> Inhibitors. ChemMedChem, 2020, 15, 219-227.	1.6	4
115	1-(1-Arylethylpiperidin-4-yl)thymine Analogs as Antimycobacterial TMPK Inhibitors. Molecules, 2020, 25, 2805.	1.7	4
116	Interferon Alpha Favors Macrophage Infection by Visceral Leishmania Species Through Upregulation of Sialoadhesin Expression. Frontiers in Immunology, 2020, 11, 1113.	2.2	4
117	Exploration of 6-methyl-7-(Hetero)Aryl-7-Deazapurine ribonucleosides as antileishmanial agents. European Journal of Medicinal Chemistry, 2022, 237, 114367.	2.6	4
118	The Challenges of Effective Leishmaniasis Treatment. , 2018, , 193-206.		3
119	Tsetse salivary glycoproteins are modified with paucimannosidic N-glycans, are recognised by C-type lectins and bind to trypanosomes. PLoS Neglected Tropical Diseases, 2021, 15, e0009071.	1.3	3
120	Antiplasmodial Oleanane Triterpenoids from <i>Terminalia albida</i> Root Bark. Journal of Natural Products, 2021, 84, 666-675.	1.5	3
121	The Biology of Tsetse–Trypanosome Interactions. , 2014, , 41-59.		3
122	Open Synthesis Network Research in an Undergraduate Laboratory: Development of Benzoxazole Amide Derivatives against <i>Leishmania</i> Parasite. Journal of Chemical Education, 0, , .	1.1	3
123	Optimization and characterization of a murine lung infection model for the evaluation of novel therapeutics against Burkholderia cenocepacia. Journal of Microbiological Methods, 2017, 139, 181-188.	0.7	2
124	Phosphonodiamidate prodrugs of N-alkoxy analogs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1051-1053.	1.0	2
125	Synthesis, Biological Activity and In Silico Pharmacokinetic Prediction of a New 2-Thioxo-Imidazoldidin-4-One of Primaquine. Pharmaceuticals, 2021, 14, 196.	1.7	2
126	The effect of the sugar metabolism on Leishmania infantum promastigotes inside the gut of Lutzomyia longipalpis: A sweet relationship?. PLoS Neglected Tropical Diseases, 2022, 16, e0010293.	1.3	2

0

#	Article	IF	CITATIONS
127	Comparative evaluation of nucleic acid stabilizing reagents for RNA- and DNA-based Leishmania detection in blood as proxy for visceral burdens. Journal of Microbiological Methods, 2020, 173, 105935.	0.7	1
128	Structural and kinetic characterization of Trypanosoma congolense pyruvate kinase. Molecular and Biochemical Parasitology, 2020, 236, 111263.	0.5	1
129	Tetrahydrophthalazinone Inhibitor of Phosphodiesterase with <i>In Vitro</i> Activity against Intracellular Trypanosomatids. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	1
130	Structure Activity Relationship of N-Substituted Phenyldihydropyrazolones Against Trypanosoma cruzi Amastigotes. Frontiers in Chemistry, 2021, 9, 608438.	1.8	1
131	Molecular Basis of Drug Resistance in <i>Leishmania</i> . RSC Drug Discovery Series, 2017, , 371-386.	0.2	1
132	Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius. PLoS Pathogens, 2022, 18, e1010376.	2.1	1
133	Early Immunological Responses Upon Tsetse Fly–Mediated Trypanosome Inoculation. , 2017, , 115-132.		0
134	Immunosuppression of Syrian golden hamsters accelerates relapse but not the emergence of resistance in Leishmania infantum following recurrent miltefosine pressure. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 9, 1-7.	1.4	0
135	Development of Novel Isoindoloneâ€Based Compounds against Trypanosoma brucei rhodesiense. ChemistryOpen, 2021, 10, 922-927.	0.9	0
136	Tsetse Fly Saliva Proteins as Biomarkers of Vector Exposure. , 2017, , 195-208.		0
137	Title is missing!. , 2020, 14, e0007947.		0
138	Title is missing!. , 2020, 14, e0007947.		0
139	Title is missing!. , 2020, 14, e0007947.		0
140	Title is missing!. , 2020, 14, e0007947.		0
141	Title is missing!. , 2020, 14, e0007947.		0

142

Title is missing!. , 2020, 14, e0007947.