Nicholas J B Isaac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4726979/publications.pdf

Version: 2024-02-01

88 papers 11,674 citations

43 h-index 58464 82 g-index

98 all docs 98 docs citations 98 times ranked 16642 citing authors

#	Article	IF	CITATIONS
1	Defaunation in the Anthropocene. Science, 2014, 345, 401-406.	6.0	2,810
2	Biodiversity and Resilience of Ecosystem Functions. Trends in Ecology and Evolution, 2015, 30, 673-684.	4.2	916
3	Mammals on the EDGE: Conservation Priorities Based on Threat and Phylogeny. PLoS ONE, 2007, 2, e296.	1.1	772
4	Taxonomic inflation: its influence on macroecology and conservation. Trends in Ecology and Evolution, 2004, 19, 464-469.	4.2	645
5	Widespread losses of pollinating insects in Britain. Nature Communications, 2019, 10, 1018.	5.8	415
6	Statistics for citizen science: extracting signals of change from noisy ecological data. Methods in Ecology and Evolution, 2014, 5, 1052-1060.	2.2	373
7	Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications, 2016, 7, 12459.	5.8	367
8	Dominance and Affiliation Mediate Despotism in a Social Primate. Current Biology, 2008, 18, 1833-1838.	1.8	251
9	Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 2015, 6, 10122.	5.8	246
10	Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 2018, 8, 713-717.	8.1	245
11	Bias and information in biological records. Biological Journal of the Linnean Society, 2015, 115, 522-531.	0.7	236
12	Invasive alien predator causes rapid declines of native European ladybirds. Diversity and Distributions, 2012, 18, 717-725.	1.9	226
13	Building essential biodiversity variables (<scp>EBV</scp> s) of species distribution and abundance at a global scale. Biological Reviews, 2018, 93, 600-625.	4.7	218
14	Data Integration for Large-Scale Models of Species Distributions. Trends in Ecology and Evolution, 2020, 35, 56-67.	4.2	205
15	How Far Do Animals Go? Determinants of Day Range in Mammals. American Naturalist, 2005, 165, 290-297.	1.0	186
16	How species respond to multiple extinction threats. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1135-1141.	1.2	180
17	Scaling of basal metabolic rate with body mass and temperature in mammals. Journal of Animal Ecology, 2010, 79, 610-619.	1.3	171
18	Measuring β <i>à€</i> diversity with species abundance data. Journal of Animal Ecology, 2015, 84, 1112-1122.	1.3	161

#	Article	ΙF	Citations
19	Phylogenetic scale in ecology and evolution. Global Ecology and Biogeography, 2018, 27, 175-187.	2.7	151
20	Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. Ecology Letters, 2010, 13, 728-735.	3.0	137
21	Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nature Ecology and Evolution, 2020, 4, 384-392.	3.4	130
22	Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2611-2622.	1.8	122
23	Radio-Tagging Technology Reveals Extreme Nest-Drifting Behavior in a Eusocial Insect. Current Biology, 2007, 17, 140-145.	1.8	108
24	Phylogenetically-Informed Priorities for Amphibian Conservation. PLoS ONE, 2012, 7, e43912.	1.1	108
25	The relationship between body mass and field metabolic rate among individual birds and mammals. Journal of Animal Ecology, 2013, 82, 1009-1020.	1.3	105
26	Butterfly abundance is determined by food availability and is mediated by species traits. Journal of Applied Ecology, 2015, 52, 1676-1684.	1.9	100
27	The use of opportunistic data for IUCN Red List assessments. Biological Journal of the Linnean Society, 2015, 115, 690-706.	0.7	99
28	Correlates of Species Richness in Mammals: Body Size, Life History, and Ecology. American Naturalist, 2005, 165, 600-607.	1.0	89
29	Global Patterns of Evolutionary Distinct and Globally Endangered Amphibians and Mammals. PLoS ONE, 2013, 8, e63582.	1.1	84
30	Global drivers of population density in terrestrial vertebrates. Global Ecology and Biogeography, 2018, 27, 968-979.	2.7	80
31	Handling missing values in trait data. Global Ecology and Biogeography, 2021, 30, 51-62.	2.7	80
32	Distance sampling and the challenge of monitoring butterfly populations. Methods in Ecology and Evolution, $2011, 2, 585-594$.	2.2	78
33	Beyond maps: a review of the applications of biological records. Biological Journal of the Linnean Society, 2015, 115, 532-542.	0.7	76
34	Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. Nature Ecology and Evolution, 2021, 5, 1510-1519.	3.4	75
35	Ecological, social, and reproductive factors shape producer–scrounger dynamics in baboons. Behavioral Ecology, 2009, 20, 1039-1049.	1.0	69
36	TetraDENSITY: A database of population density estimates in terrestrial vertebrates. Global Ecology and Biogeography, 2018, 27, 787-791.	2.7	62

#	Article	IF	Citations
37	Effective Biodiversity Monitoring Needs a Culture of Integration. One Earth, 2020, 3, 462-474.	3.6	62
38	Defining and delivering resilient ecological networks: Nature conservation in England. Journal of Applied Ecology, 2018, 55, 2537-2543.	1.9	56
39	Is more data always better? A simulation study of benefits and limitations of integrated distribution models. Ecography, 2020, 43, 1413-1422.	2.1	56
40	MacroCAIC: revealing correlates of species richness by comparative analysis. Diversity and Distributions, 2002, 8, 41-43.	1.9	54
41	High variability in patterns of population decline: the importance of local processes in species extinctions. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 63-69.	1.2	50
42	Specialism for larval and adult consumer resources among British butterflies: Implications for conservation. Biological Conservation, 2007, 138, 440-452.	1.9	47
43	What is macroecology?. Biology Letters, 2012, 8, 904-906.	1.0	47
44	PHYLOGENETICALLY NESTED COMPARISONS FOR TESTING CORRELATES OF SPECIES RICHNESS: A SIMULATION STUDY OF CONTINUOUS VARIABLES. Evolution; International Journal of Organic Evolution, 2003, 57, 18-26.	1.1	46
45	Prior specification in Bayesian occupancy modelling improves analysis of species occurrence data. Ecological Indicators, 2018, 93, 333-343.	2.6	43
46	Pollinator monitoring more than pays for itself. Journal of Applied Ecology, 2021, 58, 44-57.	1.9	41
47	Annual estimates of occupancy for bryophytes, lichens and invertebrates in the UK, 1970–2015. Scientific Data, 2019, 6, 259.	2.4	39
48	The Scaling of Abundance in Consumers and Their Resources: Implications for the Energy Equivalence Rule. American Naturalist, 2007, 170, 479-484.	1.0	37
49	Examining the relationship between local extinction risk and position in range. Conservation Biology, 2018, 32, 229-239.	2.4	37
50	The 'species problem' and testing macroevolutionary hypotheses. Diversity and Distributions, 2004, 10, 275-281.	1.9	36
51	Space-use scaling and home range overlap in primates. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122122.	1.2	36
52	Agrochemicals in the wild: Identifying links between pesticide use and declines of nontarget organisms. Current Opinion in Environmental Science and Health, 2019, 11, 53-58.	2.1	36
53	The paradox of energy equivalence. Global Ecology and Biogeography, 2013, 22, 1-5.	2.7	35
54	An operational definition of essential biodiversity variables. Biodiversity and Conservation, 2017, 26, 2967-2972.	1.2	33

#	Article	IF	CITATIONS
55	Are most species small? Not within species–level phylogenies. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1279-1287.	1.2	32
56	Taxonomic variation in size–density relationships challenges the notion of energy equivalence. Biology Letters, 2011, 7, 615-618.	1.0	32
57	Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany. Diversity and Distributions, 2021, 27, 1353-1366.	1.9	29
58	Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ, 2015, 3, e1410.	0.9	29
59	Butterfly abundance in a warming climate: patterns in space and time are not congruent. Journal of Insect Conservation, 2011, 15, 233-240.	0.8	28
60	Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe. Global Change Biology, 2017, 23, 3040-3051.	4.2	28
61	Can coarseâ€grain patterns in insect atlas data predict local occupancy?. Diversity and Distributions, 2014, 20, 895-907.	1.9	21
62	Microclimate affects landscape level persistence in the British Lepidoptera. Journal of Insect Conservation, 2015, 19, 237-253.	0.8	21
63	Assessing the usefulness of citizen science data for habitat suitability modelling: Opportunistic reporting versus sampling based on a systematic protocol. Diversity and Distributions, 2020, 26, 1276-1290.	1.9	21
64	Recent trends in UK insects that inhabit early successional stages of ecosystems. Biological Journal of the Linnean Society, 2015, 115, 636-646.	0.7	18
65	Patterns of invertebrate functional diversity highlight the vulnerability of ecosystem services over a 45-year period. Current Biology, 2021, 31, 4627-4634.e3.	1.8	18
66	The effect of temperature and habitat quality on abundance of the Glanville fritillary on the Isle of Wight: implications for conservation management in a warming climate. Journal of Insect Conservation, 2015, 19, 217-225.	0.8	15
67	An assessment of the state of nature in the United Kingdom: A review of findings, methods and impact. Ecological Indicators, 2018, 94, 226-236.	2.6	15
68	How Far Do Animals Go? Determinants of Day Range in Mammals. American Naturalist, 2005, 165, 290.	1.0	15
69	The priority species indicator: measuring the trends in threatened species in the UK. Biodiversity, 2015, 16, 108-119.	0.5	14
70	A Synthesis is Emerging between Biodiversity–Ecosystem Function and Ecological Resilience Research: Reply to Mori. Trends in Ecology and Evolution, 2016, 31, 89-92.	4.2	14
71	Comparing Life Histories across Taxonomic Groups in Multiple Dimensions: How Mammal-Like Are Insects?. American Naturalist, 2020, 195, 70-81.	1.0	14
72	A century of social wasp occupancy trends from natural history collections: spatiotemporal resolutions have little effect on model performance. Insect Conservation and Diversity, 2021, 14, 543-555.	1.4	14

#	Article	IF	CITATIONS
73	The Use of EDGE (Evolutionary Distinct Globally Endangered) and EDGE-Like Metrics to Evaluate Taxa for Conservation., 2018,, 27-39.		12
74	Rapid Anthropocene realignment of allometric scaling rules. Ecology Letters, 2021, 24, 1318-1327.	3.0	12
75	Morphological and Geographical Traits of the British Odonata. Biodiversity Data Journal, 2014, 2, e1041.	0.4	11
76	Using long-term datasets to assess the impacts of dietary exposure to neonicotinoids on farmland bird populations in England. PLoS ONE, 2019, 14, e0223093.	1.1	9
77	Observer retention, site selection and population dynamics interact to bias abundance trends in bats. Journal of Applied Ecology, 2021, 58, 236-247.	1.9	9
78	Can unified theories of biodiversity explain mammalian macroecological patterns?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2554-2563.	1.8	7
79	Long-term trends in the occupancy of ants revealed through use of multi-sourced datasets. Biology Letters, 2021, 17, 20210240.	1.0	6
80	The Rise and Demise of the Glanville fritillary on the Isle of Wight. Journal of Insect Conservation, 2015, 19, 305-311.	0.8	5
81	Accounting for spatial autocorrelation and environment are important to derive robust bat population trends from citizen science data. Ecological Indicators, 2022, 136, 108719.	2.6	5
82	PHYLOGENETICALLY NESTED COMPARISONS FOR TESTING CORRELATES OF SPECIES RICHNESS: A SIMULATION STUDY OF CONTINUOUS VARIABLES. Evolution; International Journal of Organic Evolution, 2003, 57, 18.	1.1	4
83	A Generic Method for Estimating and Smoothing Multispecies Biodiversity Indicators Using Intermittent Data. Journal of Agricultural, Biological, and Environmental Statistics, 2021, 26, 71-89.	0.7	3
84	Multi-species population indices for sets of species including rare, disappearing or newly occurring species. Ecological Indicators, 2022, 140, 109005.	2.6	2
85	Modelling the Heterogeneity within Citizen Science Data for Biodiversity Research. Biodiversity Information Science and Standards, 0, 5, .	0.0	0
86	Practical Considerations for Implementing Species Distribution Essential Biodiversity Variables. Biodiversity Information Science and Standards, 0, 5, .	0.0	0
87	Butterfly abundance in a warming climate: patterns in space and time are not congruent. , 2010, , 141-148.		0
88	Towards an annual species distribution EBV for the United Kingdom. Biodiversity Information Science and Standards, 0, 3, .	0.0	0