
## **Guy G Poirier**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4726668/publications.pdf Version: 2024-02-01



CUV C POIDIED

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.                                                                                                                        | 2.2 | 150       |
| 2  | Identification of Mitofusin 1 and Complement Component 1q Subcomponent Binding Protein as<br>Mitochondrial Targets in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2022, 74,<br>1193-1203.                      | 2.9 | 13        |
| 3  | Neuroprotective Effects of PARP Inhibitors in Drosophila Models of Alzheimer's Disease. Cells, 2022,<br>11, 1284.                                                                                                            | 1.8 | 9         |
| 4  | The SARS-CoV-2 Conserved Macrodomain Is a Mono-ADP-Ribosylhydrolase. Journal of Virology, 2021, 95, .                                                                                                                        | 1.5 | 98        |
| 5  | Drosophila Tubulin-Specific Chaperone E Recruits Tubulin around Chromatin to Promote Mitotic<br>Spindle Assembly. Current Biology, 2021, 31, 684-695.e6.                                                                     | 1.8 | 6         |
| 6  | CARM1 regulates replication fork speed and stress response by stimulating PARP1. Molecular Cell, 2021, 81, 784-800.e8.                                                                                                       | 4.5 | 61        |
| 7  | Platelets release mitochondrial antigens in systemic lupus erythematosus. Science Translational<br>Medicine, 2021, 13, .                                                                                                     | 5.8 | 59        |
| 8  | Zinc finger protein E4F1 cooperates with PARP-1 and BRG1 to promote DNA double-strand break repair.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                         | 3.3 | 18        |
| 9  | PARP-1 activation leads to cytosolic accumulation of TDP-43 in neurons. Neurochemistry International, 2021, 148, 105077.                                                                                                     | 1.9 | 5         |
| 10 | 404â€Platelets are a source of extracellular mitochondria and mitochondrial DNA in systemic lupus<br>erythematosus. , 2021, , .                                                                                              |     | 0         |
| 11 | Assessment of PARP-1 Distribution in Tissues of Cynomolgus Monkeys. Journal of Histochemistry and Cytochemistry, 2020, 68, 413-435.                                                                                          | 1.3 | 4         |
| 12 | The prefoldin complex stabilizes the von Hippel-Lindau protein against aggregation and degradation.<br>PLoS Genetics, 2020, 16, e1009183.                                                                                    | 1.5 | 6         |
| 13 | SULT4A1 Protects Against Oxidative-Stress Induced Mitochondrial Dysfunction in Neuronal Cells.<br>Drug Metabolism and Disposition, 2019, 47, 949-953.                                                                        | 1.7 | 13        |
| 14 | Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nature<br>Communications, 2019, 10, 2954.                                                                                                   | 5.8 | 122       |
| 15 | Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. Nature<br>Communications, 2019, 10, 1182.                                                                                               | 5.8 | 113       |
| 16 | A Context-Dependent Role for the RNF146 Ubiquitin Ligase in Wingless/Wnt Signaling in Drosophila.<br>Genetics, 2019, 211, 913-923.                                                                                           | 1.2 | 6         |
| 17 | Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination. Genes and Development, 2019, 33, 75-89.                                                                        | 2.7 | 18        |
| 18 | Platelets release pathogenic serotonin and return to circulation after immune complex-mediated<br>sequestration. Proceedings of the National Academy of Sciences of the United States of America, 2018,<br>115, E1550-E1559. | 3.3 | 164       |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Phase I Clinical Trial of the Poly(ADP-ribose) Polymerase Inhibitor Veliparib and Weekly Topotecan in<br>Patients with Solid Tumors. Clinical Cancer Research, 2018, 24, 744-752.                                          | 3.2 | 43        |
| 20 | Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson's disease. Science, 2018,<br>362, .                                                                                                            | 6.0 | 317       |
| 21 | Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC–MS/MS.<br>Journal of Proteome Research, 2018, 17, 2542-2551.                                                                        | 1.8 | 15        |
| 22 | Urinary Elimination of Bile Acid Glucuronides under Severe Cholestatic Situations: Contribution of<br>Hepatic and Renal Glucuronidation Reactions. Canadian Journal of Gastroenterology and Hepatology,<br>2018, 2018, 1-12. | 0.8 | 12        |
| 23 | Direct Phosphorylation of SRC Homology 3 Domains by Tyrosine Kinase Receptors Disassembles<br>Ligand-Induced Signaling Networks. Molecular Cell, 2018, 70, 995-1007.e11.                                                     | 4.5 | 21        |
| 24 | Aurora kinase A localises to mitochondria to control organelle dynamics and energy production.<br>ELife, 2018, 7, .                                                                                                          | 2.8 | 63        |
| 25 | Selective and sensitive quantification of the cytochrome P450 3A4 protein in human liver homogenates through multiple reaction monitoring mass spectrometry. Proteomics, 2016, 16, 2827-2837.                                | 1.3 | 8         |
| 26 | Poly(ADP-ribosyl)ation-dependent Transient Chromatin Decondensation and Histone Displacement following Laser Microirradiation. Journal of Biological Chemistry, 2016, 291, 1789-1802.                                        | 1.6 | 80        |
| 27 | Different non-synonymous polymorphisms modulate the interaction of the WRN protein to its protein partners and its enzymatic activities. Oncotarget, 2016, 7, 85680-85696.                                                   | 0.8 | 3         |
| 28 | Roles of Rad51 paralogs for promoting homologous recombination in Leishmania infantum. Nucleic<br>Acids Research, 2015, 43, 2701-2715.                                                                                       | 6.5 | 23        |
| 29 | DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles' Heel of Cancer.<br>Biomolecules, 2015, 5, 3204-3259.                                                                                            | 1.8 | 85        |
| 30 | The von Hippel–Lindau tumour suppressor gene: uncovering the expression of the pVHL172 isoform.<br>British Journal of Cancer, 2015, 113, 336-344.                                                                            | 2.9 | 21        |
| 31 | DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair. Nucleic Acids Research, 2015, 43, 875-892.                                                                        | 6.5 | 32        |
| 32 | Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs. DNA Repair, 2015, 30, 68-79.                                                                                                                   | 1.3 | 56        |
| 33 | The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nature Cell Biology, 2015, 17, 1446-1457.                                                                             | 4.6 | 113       |
| 34 | Crystallographic and Biochemical Analysis of the Mouse Poly(ADP-Ribose) Glycohydrolase. PLoS ONE, 2014, 9, e86010.                                                                                                           | 1.1 | 24        |
| 35 | ARTD1/PARP1 Negatively Regulates Glycolysis by Inhibiting Hexokinase 1 Independent of NAD + Depletion.<br>Cell Reports, 2014, 8, 1819-1831.                                                                                  | 2.9 | 169       |
| 36 | Ensconsin/Map7 promotes microtubule growth and centrosome separation in <i>Drosophila</i> neural stem cells. Journal of Cell Biology, 2014, 204, 1111-1121.                                                                  | 2.3 | 60        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10209-10214.                 | 3.3 | 253       |
| 38 | Germline Mutations in BAP1 Impair Its Function in DNA Double-Strand Break Repair. Cancer Research, 2014, 74, 4282-4294.                                                                                                     | 0.4 | 168       |
| 39 | Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. International<br>Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 126-132.                                                | 1.4 | 71        |
| 40 | The RAD51 paralogs ensure cellular protection against mitotic defects and aneuploidy. Journal of Cell Science, 2013, 126, 348-359.                                                                                          | 1.2 | 47        |
| 41 | Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Molecular Aspects of Medicine, 2013, 34, 1066-1087.                                                                                                     | 2.7 | 141       |
| 42 | Mapping PARP-1 Auto-ADP-ribosylation Sites by Liquid Chromatography–Tandem Mass Spectrometry.<br>Journal of Proteome Research, 2013, 12, 1868-1880.                                                                         | 1.8 | 80        |
| 43 | Polycomb repressive complex 2 contributes to DNA double-strand break repair. Cell Cycle, 2013, 12, 2675-2683.                                                                                                               | 1.3 | 112       |
| 44 | Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant. PLoS ONE, 2013, 8, e81899.                                                                                                                 | 1.1 | 63        |
| 45 | Poly(ADP) Ribose Polymerase at the Interface of DNA Damage Signaling and DNA Repair. , 2013, , 167-186.                                                                                                                     |     | 0         |
| 46 | PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Research, 2012, 40, 10287-10301.                                                               | 6.5 | 136       |
| 47 | Quantitative proteomics and dynamic imaging reveal that G3BP-mediated stress granule assembly is poly(ADP-ribose)-dependent following exposure to MNNG-induced DNA alkylation. Journal of Cell Science, 2012, 125, 4555-66. | 1.2 | 59        |
| 48 | CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids<br>Research, 2012, 40, 5497-5510.                                                                                          | 6.5 | 117       |
| 49 | Failure of Iniparib to Inhibit Poly(ADP-Ribose) Polymerase <i>In Vitro</i> . Clinical Cancer Research, 2012, 18, 1655-1662.                                                                                                 | 3.2 | 204       |
| 50 | Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress.<br>Nucleic Acids Research, 2012, 40, 7788-7805.                                                                             | 6.5 | 138       |
| 51 | Enhanced Killing of Cancer Cells by Poly(ADP-ribose) Polymerase Inhibitors and Topoisomerase I<br>Inhibitors Reflects Poisoning of Both Enzymes. Journal of Biological Chemistry, 2012, 287, 4198-4210.                     | 1.6 | 89        |
| 52 | PARP1 Parylation Promotes Silent Locus Transmission in the Nucleolus: The Suspicion Confirmed.<br>Molecular Cell, 2012, 45, 706-707.                                                                                        | 4.5 | 6         |
| 53 | Proteomics reveals a switch in CDK1-associated proteins upon M-phase exit during the Xenopus laevis oocyte to embryo transition. International Journal of Biochemistry and Cell Biology, 2012, 44, 53-64.                   | 1.2 | 13        |
| 54 | PARP-1 Modulation of mTOR Signaling in Response to a DNA Alkylating Agent. PLoS ONE, 2012, 7, e47978.                                                                                                                       | 1.1 | 64        |

| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | PARP-1 Activation—Bringing the Pieces Together. Science, 2012, 336, 678-679.                                                                                                   | 6.0  | 22        |
| 56 | Proteome-wide Identification of WRN-Interacting Proteins in Untreated and Nuclease-Treated Samples.<br>Journal of Proteome Research, 2011, 10, 1216-1227.                      | 1.8  | 39        |
| 57 | Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1. Expert Review of Proteomics, 2011, 8, 759-774.                                                 | 1.3  | 14        |
| 58 | Poly(ADP-Ribose) (PAR) Binding to Apoptosis-Inducing Factor Is Critical for PAR<br>Polymerase-1–Dependent Cell Death (Parthanatos). Science Signaling, 2011, 4, ra20.          | 1.6  | 360       |
| 59 | PARP-3 and APLF Function Together to Accelerate Nonhomologous End-Joining. Molecular Cell, 2011, 41, 33-45.                                                                    | 4.5  | 278       |
| 60 | lduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nature Medicine, 2011, 17, 692-699.         | 15.2 | 190       |
| 61 | Focus on Computational Proteomics. Proteomics, 2011, 11, 3771-3772.                                                                                                            | 1.3  | Ο         |
| 62 | lduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proceedings of the United States of America, 2011, 108, 14103-14108.                | 3.3  | 205       |
| 63 | Affinity-Based Assays for the Identification and Quantitative Evaluation of Noncovalent<br>Poly(ADP-Ribose)-Binding Proteins. Methods in Molecular Biology, 2011, 780, 93-115. | 0.4  | 10        |
| 64 | A Key Role for Poly(ADP-Ribose) Polymerase 3 in Ectodermal Specification and Neural Crest<br>Development. PLoS ONE, 2011, 6, e15834.                                           | 1.1  | 17        |
| 65 | Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry.<br>Proteome Science, 2010, 8, 22.                                           | 0.7  | 133       |
| 66 | PARP inhibition: PARP1 and beyond. Nature Reviews Cancer, 2010, 10, 293-301.                                                                                                   | 12.8 | 1,166     |
| 67 | An SNP in an ultraconserved regulatory element affects <i>Dlx5/Dlx6</i> regulation in the forebrain.<br>Development (Cambridge), 2010, 137, 3089-3097.                         | 1.2  | 63        |
| 68 | The Human UGT1A3 Enzyme Conjugates Norursodeoxycholic Acid into a C23-ester Glucuronide in the<br>Liver. Journal of Biological Chemistry, 2010, 285, 1113-1121.                | 1.6  | 19        |
| 69 | Assessment of PARP-3 Distribution in Tissues of Cynomolgous Monkeys. Journal of Histochemistry and Cytochemistry, 2009, 57, 675-685.                                           | 1.3  | 12        |
| 70 | Quality assessment of tandem mass spectra using support vector machine (SVM). BMC Bioinformatics, 2009, 10, S49.                                                               | 1.2  | 9         |
| 71 | A HUPO test sample study reveals common problems in mass spectrometry–based proteomics. Nature<br>Methods, 2009, 6, 423-430.                                                   | 9.0  | 316       |
| 72 | Proteomic analysis of enriched lysosomes at early phase of camptothecin-induced apoptosis in human<br>U-937 cells. Journal of Proteomics, 2009, 72, 960-973.                   | 1.2  | 21        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Proteomic Investigation of Phosphorylation Sites in Poly(ADP-ribose) Polymerase-1 and<br>Poly(ADP-ribose) Glycohydrolase. Journal of Proteome Research, 2009, 8, 1014-1029.                                                   | 1.8 | 49        |
| 74 | A novel approach to denoising ion trap tandem mass spectra. Proteome Science, 2009, 7, 9.                                                                                                                                     | 0.7 | 23        |
| 75 | Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.                                                                                                                            | 9.4 | 155       |
| 76 | Effect of potato suberin on <i>Streptomyces scabies</i> proteome. Molecular Plant Pathology, 2008,<br>9, 753-762.                                                                                                             | 2.0 | 22        |
| 77 | Quality assessment of peptide tandem mass spectra. BMC Bioinformatics, 2008, 9, S13.                                                                                                                                          | 1.2 | 24        |
| 78 | Proteomic Characterization of Mouse Cytosolic and Membrane Prostate Fractions: High Levels of Free<br>SUMO Peptides Are Androgen-Regulated. Journal of Proteome Research, 2008, 7, 4492-4499.                                 | 1.8 | 8         |
| 79 | Differential Proteomic Screen To Evidence Proteins Ubiquitinated upon Mitotic Exit in Cell-Free<br>Extract of <i>Xenopus laevis</i> Embryos. Journal of Proteome Research, 2008, 7, 4701-4714.                                | 1.8 | 5         |
| 80 | Human Papillomavirus E1 Helicase Interacts with the WD Repeat Protein p80 To Promote Maintenance of the Viral Genome in Keratinocytes. Journal of Virology, 2008, 82, 1271-1283.                                              | 1.5 | 41        |
| 81 | Genomic location of the human RNA polymerase II general machinery: evidence for a role of TFIIF and Rpb7 at both early and late stages of transcription. Biochemical Journal, 2008, 409, 139-147.                             | 1.7 | 31        |
| 82 | PARP1-dependent Kinetics of Recruitment of MRE11 and NBS1 Proteins to Multiple DNA Damage Sites.<br>Journal of Biological Chemistry, 2008, 283, 1197-1208.                                                                    | 1.6 | 469       |
| 83 | Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Research, 2008, 36, 6959-6976.                                                             | 6.5 | 359       |
| 84 | An approach to assessing peptide mass spectral quality without prior information. International<br>Journal of Functional Informatics and Personalised Medicine, 2008, 1, 140.                                                 | 0.4 | 4         |
| 85 | Ataxia Telangiectasia Mutated (ATM) Signaling Network Is Modulated by a Novel<br>Poly(ADP-ribose)-dependent Pathway in the Early Response to DNA-damaging Agents. Journal of<br>Biological Chemistry, 2007, 282, 16441-16453. | 1.6 | 225       |
| 86 | Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus. Neuroscience, 2007, 144, 56-65.                                             | 1.1 | 40        |
| 87 | Spatial and functional relationship between poly(ADP-ribose) polymerase-1 and poly(ADP-ribose)<br>glycohydrolase in the brain. Neuroscience, 2007, 148, 198-211.                                                              | 1.1 | 34        |
| 88 | Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery<br>Reveals the Identity of the 7SK Capping Enzyme. Molecular Cell, 2007, 27, 262-274.                                            | 4.5 | 404       |
| 89 | Comparative proteome analysis of human epithelial ovarian cancer. Proteome Science, 2007, 5, 16.                                                                                                                              | 0.7 | 47        |
| 90 | Comparative Proteomics Analyses Reveal a Potential Biomarker for the Detection of<br>Vancomycin-Intermediate Staphylococcus aureus Strains. Journal of Proteome Research, 2007, 6,<br>4690-4702.                              | 1.8 | 56        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. Journal of Cellular Biochemistry, 2007, 100, 385-401.                                                          | 1.2 | 100       |
| 92  | A novel form of ataxia oculomotor apraxia characterized by oxidative stress and apoptosis resistance.<br>Cell Death and Differentiation, 2007, 14, 1149-1161.                                                       | 5.0 | 14        |
| 93  | PARPs database: A LIMS systems for protein-protein interaction data mining or laboratory information management system. BMC Bioinformatics, 2007, 8, 483.                                                           | 1.2 | 17        |
| 94  | Amino acid substitutions that specifically impair the transcriptional activity of papillomavirus E2 affect binding to the long isoform of Brd4. Virology, 2007, 358, 10-17.                                         | 1.1 | 71        |
| 95  | PARP-1-induced cell death through inhibition of the MEK/ERK pathway in MNNG-treated HeLa cells.<br>Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 2037-2049.                               | 2.2 | 29        |
| 96  | TRANSCRIPTION: Gene Expression Needs a Break to Unwind Before Carrying On. Science, 2006, 312, 1752-1753.                                                                                                           | 6.0 | 29        |
| 97  | RT-PSM, a real-time program for peptide-spectrum matching with statistical significance. Rapid<br>Communications in Mass Spectrometry, 2006, 20, 1199-1208.                                                         | 0.7 | 18        |
| 98  | Insulin-dependent phosphorylation of DPP IV in liver. Evidence for a role of compartmentalized c-Src.<br>FEBS Journal, 2006, 273, 992-1003.                                                                         | 2.2 | 19        |
| 99  | The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Current<br>Opinion in Cell Biology, 2006, 18, 145-151.                                                                  | 2.6 | 120       |
| 100 | Dynamic relocation of poly(ADP-ribose) glycohydrolase isoforms during radiation-induced DNA<br>damage. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 226-237.                                | 1.9 | 40        |
| 101 | Bioinformatic Standards for Proteomics-Oriented Mass Spectrometry. Current Proteomics, 2006, 3, 119-128.                                                                                                            | 0.1 | 7         |
| 102 | Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proceedings of the United States of America, 2006, 103, 18314-18319.                                                          | 3.3 | 655       |
| 103 | Quality Assessment of Peptide Tandem Mass Spectra. , 2006, , .                                                                                                                                                      |     | 0         |
| 104 | Poly(ADP-ribose) (PAR) polymer is a death signal. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18308-18313.                                                          | 3.3 | 572       |
| 105 | Poly(ADP-ribose) glycohydrolase is a component of the FMRP-associated messenger<br>ribonucleoparticles. Biochemical Journal, 2005, 392, 499-509.                                                                    | 1.7 | 19        |
| 106 | LOW HEPATIC ETHOXYRESORUFIN-O-DEETHYLASE ACTIVITY CORRELATES WITH HIGH ORGANOCHLORINE<br>CONCENTRATIONS IN ATLANTIC TOMCOD FROM THE CANADIAN EAST COAST. Environmental Toxicology<br>and Chemistry, 2005, 24, 2459. | 2.2 | 16        |
| 107 | Proteome profiling of human epithelial ovarian cancer cell line TOV-112D. Molecular and Cellular<br>Biochemistry, 2005, 275, 25-55.                                                                                 | 1.4 | 35        |
| 108 | Experimental and bioinformatic approaches for interrogating protein–protein interactions to determine protein function. Journal of Molecular Endocrinology, 2005, 34, 263-280.                                      | 1.1 | 56        |

| #   | Article                                                                                                                                                                                                                                                                      | IF                | CITATIONS      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 109 | Targeting poly(ADP-ribosyl)ation: a promising approach in cancer therapy. Trends in Molecular<br>Medicine, 2005, 11, 456-463.                                                                                                                                                | 3.5               | 92             |
| 110 | Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic<br>lethality. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101,<br>17699-17704.                                               | 3.3               | 285            |
| 111 | Poly(ADP-ribosyl)ated chromatin domains: access granted. Journal of Cell Science, 2004, 117, 815-825.                                                                                                                                                                        | 1.2               | 174            |
| 112 | A conserved initiator element on the mammalian poly(ADP-ribose) polymerase-1 promoters, in<br>combination with flanking core elements, is necessary to obtain high transcriptional activity.<br>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1679, 37-46. | 2.4               | 12             |
| 113 | Apoptosis-Inducing Factor Substitutes for Caspase Executioners in NMDA-Triggered Excitotoxic<br>Neuronal Death. Journal of Neuroscience, 2004, 24, 10963-10973.                                                                                                              | 1.7               | 258            |
| 114 | PARP-1, a determinant of cell survival in response to DNA damage. Experimental Hematology, 2003, 31, 446-454.                                                                                                                                                                | 0.2               | 332            |
| 115 | Alteration of poly(ADP-ribose) glycohydrolase nucleocytoplasmic shuttling characteristics upon cleavage by apoptotic proteases. Biology of the Cell, 2003, 95, 635-644.                                                                                                      | 0.7               | 35             |
| 116 | Nonisotopic Methods for Determination of Poly( ADP â€Ribose) Levels and Detection of Poly( ADP) Tj ETQq0 0 (                                                                                                                                                                 | ) rgBT /Ov<br>2.3 | erlock 10 Tf 5 |
| 117 | Poly(ADP-ribose) Polymerase-1 Is a Positive Regulator of the p53-mediated G1 Arrest Response following<br>Ionizing Radiation. Journal of Biological Chemistry, 2003, 278, 18914-18921.                                                                                       | 1.6               | 96             |
| 118 | Identification of Streptomyces coelicolor Proteins That Are Differentially Expressed in the Presence of Plant Material. Applied and Environmental Microbiology, 2003, 69, 1884-1889.                                                                                         | 1.4               | 35             |
| 119 | A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins. Biochemical Journal, 2003, 371, 331-340.                                                                                        | 1.7               | 102            |
| 120 | Mediation of Poly(ADP-Ribose) Polymerase-1-Dependent Cell Death by Apoptosis-Inducing Factor.<br>Science, 2002, 297, 259-263.                                                                                                                                                | 6.0               | 1,671          |
| 121 | tej Defines a Role for Poly(ADP-Ribosyl)ation in Establishing Period Length of the Arabidopsis<br>Circadian Oscillator. Developmental Cell, 2002, 3, 51-61.                                                                                                                  | 3.1               | 109            |
| 122 | Poly(ADP-ribose) degradation by post-nuclear extracts from human cells. Biochimie, 2002, 84, 1227-1233.                                                                                                                                                                      | 1.3               | 21             |
| 123 | Disruptor of Telomeric Silencing-1 Is a Chromatin-specific Histone H3 Methyltransferase. Journal of<br>Biological Chemistry, 2002, 277, 30421-30424.                                                                                                                         | 1.6               | 260            |
| 124 | Environmental exposure to polychlorinated biphenyls and placental CYP1A1 activity in Inuit women from northern Québec Environmental Health Perspectives, 2002, 110, 607-612.                                                                                                 | 2.8               | 35             |
| 125 | Pharmacological Intakes of Niacin Increase Bone Marrow Poly(ADP-Ribose) and the Latency of Ethylnitrosourea-Induced Carcinogenesis in Rats. Journal of Nutrition, 2002, 132, 115-120.                                                                                        | 1.3               | 31             |
| 126 | Niacin Deficiency Decreases Bone Marrow Poly(ADP-Ribose) and the Latency of<br>Ethylnitrosourea-Induced Carcinogenesis in Rats. Journal of Nutrition, 2002, 132, 108-114.                                                                                                    | 1.3               | 39             |

| #   | Article                                                                                                                                                                                                                    | IF               | CITATIONS       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| 127 | In-situ analysis of cellular poly(ADP-ribose) production in scrapie-infected mouse neuroblastoma<br>cells. The Histochemical Journal, 2002, 34, 357-363.                                                                   | 0.6              | 4               |
| 128 | Modulation of Caspase-3 Activity by Zinc Ions and by the Cell Redox State. Experimental Cell Research, 2001, 266, 323-332.                                                                                                 | 1.2              | 24              |
| 129 | Importance of Poly(ADP-Ribose) Glycohydrolase in the Control of Poly(ADP-Ribose) Metabolism.<br>Experimental Cell Research, 2001, 268, 7-13.                                                                               | 1.2              | 295             |
| 130 | Chapter 12 Identification and analysis of caspase substrates: Proteolytic Cleavage of poly(ADP-rib) Tj ETQq0 0 0                                                                                                           | rgBT /Ove<br>0.5 | erlogk 10 Tf 50 |
| 131 | Analysis of ADP-ribose polymer sizes in intact cells. Molecular and Cellular Biochemistry, 2001, 224, 183-185.                                                                                                             | 1.4              | 15              |
| 132 | Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death and Differentiation, 2001, 8, 588-594.                                                   | 5.0              | 282             |
| 133 | Identification of Sequence-Specific DNA-Binding Proteins by Southwestern Blotting. , 2001, 148, 255-264.                                                                                                                   |                  | 5               |
| 134 | Nuclear Factor 1 Interferes with Sp1 Binding through a Composite Element on the Rat Poly(ADP-ribose)<br>Polymerase Promoter to Modulate Its Activity in Vitro. Journal of Biological Chemistry, 2001, 276,<br>20766-20773. | 1.6              | 34              |
| 135 | Cigarette smoking during pregnancy: comparison of biomarkers for inclusion in epidemiological studies. Biomarkers, 2001, 6, 161-173.                                                                                       | 0.9              | 17              |
| 136 | Caspase-3-mediated Processing of Poly(ADP-ribose) Glycohydrolase during Apoptosis. Journal of<br>Biological Chemistry, 2001, 276, 2935-2942.                                                                               | 1.6              | 106             |
| 137 | Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. Journal of Cell Science, 2001, 114, 3771-3778.                                                         | 1.2              | 242             |
| 138 | NMDA But Not Non-NMDA Excitotoxicity is Mediated by Poly(ADP-Ribose) Polymerase. Journal of Neuroscience, 2000, 20, 8005-8011.                                                                                             | 1.7              | 206             |
| 139 | LUCA-15-encoded sequence variants regulate CD95-mediated apoptosis. Oncogene, 2000, 19, 3774-3781.                                                                                                                         | 2.6              | 50              |
| 140 | Niacin Deficiency in Rats Increases the Severity of Ethylnitrosourea-Induced Anemia and Leukopenia.<br>Journal of Nutrition, 2000, 130, 1102-1107.                                                                         | 1.3              | 21              |
| 141 | Characterization of sPARP-1. Journal of Biological Chemistry, 2000, 275, 15504-15511.                                                                                                                                      | 1.6              | 68              |
| 142 | Effects of transient global ischemia and kainate on poly(ADP-ribose) polymerase (PARP) gene<br>expression and proteolytic cleavage in gerbil and rat brains. Molecular Brain Research, 2000, 80, 7-16.                     | 2.5              | 23              |
| 143 | PARP degradation in apoptotic Syrian hamster embryo (SHE) cells compared to HL60 cell line.<br>Biochimie, 2000, 82, 1115-1122.                                                                                             | 1.3              | 12              |
| 144 | Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucleic Acids Research, 2000, 28, 3887-3896.                                                                                             | 6.5              | 119             |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Caspase-mediated Cleavage of DNA Topoisomerase I at Unconventional Sites during Apoptosis. Journal of Biological Chemistry, 1999, 274, 4335-4340.                                                               | 1.6 | 94        |
| 146 | Cleavage of Automodified Poly(ADP-ribose) Polymerase during Apoptosis. Journal of Biological<br>Chemistry, 1999, 274, 28379-28384.                                                                              | 1.6 | 400       |
| 147 | Poly(ADP-ribosylation) and apoptosis. , 1999, 199, 125-137.                                                                                                                                                     |     | 130       |
| 148 | Title is missing!. Molecular and Cellular Biochemistry, 1999, 193, 83-87.                                                                                                                                       | 1.4 | 17        |
| 149 | Relative affinities of poly(ADP-ribose) polymerase and DNA-dependent protein kinase for DNA strand interruptions. BBA - Proteins and Proteomics, 1999, 1430, 119-126.                                           | 2.1 | 89        |
| 150 | Immunological determination and size characterization of poly(ADP-ribose) synthesized in vitro and in vivo. Biochimica Et Biophysica Acta - General Subjects, 1999, 1428, 137-146.                              | 1.1 | 55        |
| 151 | Fanconi Anemia C Protein Acts at a Switch between Apoptosis and Necrosis in Mitomycin C-Induced<br>Cell Death. Experimental Cell Research, 1999, 246, 384-394.                                                  | 1.2 | 30        |
| 152 | Poly(ADP-ribose) Glycohydrolase Is Present and Active in Mammalian Cells as a 110-kDa Protein.<br>Experimental Cell Research, 1999, 246, 395-398.                                                               | 1.2 | 39        |
| 153 | Activation of the p38 and JNK/SAPK Mitogen-Activated Protein Kinase Pathways during Apoptosis Is<br>Mediated by a Novel Retinoid. Experimental Cell Research, 1999, 247, 233-240.                               | 1.2 | 53        |
| 154 | Preferential Perinuclear Localization of Poly(ADP-ribose) Glycohydrolase. Experimental Cell<br>Research, 1999, 251, 372-378.                                                                                    | 1.2 | 45        |
| 155 | Liver Poly(ADP-ribose)polymerase Is Resistant to Cleavage by Caspases. Biochemical and Biophysical<br>Research Communications, 1999, 256, 436-441.                                                              | 1.0 | 18        |
| 156 | Cytochrome P450 CYP1A1 Enzyme Activity and DNA Adducts in Placenta of Women Environmentally<br>Exposed to Organochlorines. Environmental Research, 1999, 80, 369-382.                                           | 3.7 | 50        |
| 157 | Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochemical Journal, 1999, 342, 249-268.                                                                                               | 1.7 | 1,541     |
| 158 | Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochemical Journal, 1999, 342, 249.                                                                                                   | 1.7 | 815       |
| 159 | Niacin deficiency increases the sensitivity of rats to the short and long term effects of ethylnitrosourea treatment. , 1999, , 83-87.                                                                          |     | 1         |
| 160 | Apparent cleavage of poly(ADP-ribose) polymerase in non-apoptotic mouse LTA cells: an artifact of cross-reactive secondary antibody. Molecular and Cellular Biochemistry, 1998, 178, 245-249.                   | 1.4 | 8         |
| 161 | Rapid detection of poly(ADP-ribose) polymerase by enzyme-linked immunosorbent assay during its<br>purification and improvement of its purification. Molecular and Cellular Biochemistry, 1998, 185,<br>199-203. | 1.4 | 2         |
| 162 | Isolation, purification and partial characterization of chloragocytes from the earthworm species<br>Lumbricus terrestris. Molecular and Cellular Biochemistry, 1998, 185, 123-133.                              | 1.4 | 37        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Role of an acidic compartment in tumor-necrosis-factor-alpha-induced production of ceramide, activation of caspase-3 and apoptosis. FEBS Journal, 1998, 251, 295-303.                                                                                                        | 0.2 | 97        |
| 164 | Immunodot Blot Method for the Detection of Poly(ADP-ribose) Synthesizedin Vitroandin Vivo.<br>Analytical Biochemistry, 1998, 259, 280-283.                                                                                                                                   | 1.1 | 45        |
| 165 | Proteolysis of Poly(ADP-Ribose) Polymerase by Caspase 3: Kinetics of Cleavage of<br>Mono(ADP-Ribosyl)ated and DNA-Bound Substrates. Radiation Research, 1998, 150, 3.                                                                                                        | 0.7 | 53        |
| 166 | Activation of Cysteine Proteases in Cowpea Plants during the Hypersensitive Response—A Form of<br>Programmed Cell Death. Experimental Cell Research, 1998, 245, 389-399.                                                                                                     | 1.2 | 96        |
| 167 | Extrusion of earthworm coelomocytes: comparison of the cell populations recovered from the species Lumbricus terrestris, Eisenia fetida and Octolasion tyrtaeum. Laboratory Animals, 1997, 31, 326-336.                                                                      | 0.5 | 38        |
| 168 | Alteration in methyl-methanesulfonate-induced poly(ADP-ribosyl)ation by 2-butoxyethanol in Syrian<br>hamster embryo cells. Carcinogenesis, 1997, 18, 2333-2338.                                                                                                              | 1.3 | 6         |
| 169 | Cytokine Response Modifier A (CrmA) Inhibits Ceramide Formation in Response to Tumor Necrosis<br>Factor (TNF)-1±: CrmA and Bcl-2 Target Distinct Components in the Apoptotic Pathway. Journal of<br>Experimental Medicine, 1997, 185, 481-490.                               | 4.2 | 212       |
| 170 | Zinc Is a Potent Inhibitor of the Apoptotic Protease, Caspase-3. Journal of Biological Chemistry, 1997, 272, 18530-18533.                                                                                                                                                    | 1.6 | 434       |
| 171 | Characterization of antibodies specific for the caspase cleavage site on poly(ADP-ribose) polymerase:<br>specific detection of apoptotic fragments and mapping of the necrotic fragments of<br>poly(ADP-ribose)polymerase. Biochemistry and Cell Biology, 1997, 75, 451-456. | 0.9 | 35        |
| 172 | Interaction of DNA-Dependent Protein Kinase and Poly(ADP-Ribose) Polymerase with Radiation-Induced DNA Strand Breaks. Radiation Research, 1997, 148, 22.                                                                                                                     | 0.7 | 49        |
| 173 | ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the<br>post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO Journal,<br>1997, 16, 6018-6033.                                                       | 3.5 | 343       |
| 174 | Specific Cleavage of the Large Subunit of Replication Factor C in Apoptosis Is Mediated by CPP32-like<br>Protease. Biochemical and Biophysical Research Communications, 1997, 233, 343-348.                                                                                  | 1.0 | 18        |
| 175 | Inhibition of ICE-Related Proteases (Caspases) and Nuclear Apoptosis by Phenylarsine Oxide.<br>Experimental Cell Research, 1997, 231, 123-131.                                                                                                                               | 1.2 | 37        |
| 176 | Characterization of anti-peptide antibodies directed towards the automodification domain and<br>apoptotic fragment of poly(ADP-ribose) polymerase. Biochimica Et Biophysica Acta - General Subjects,<br>1997, 1334, 65-72.                                                   | 1.1 | 47        |
| 177 | Cloning and Expression of a Rat Brain Interleukin-1β-Converting Enzyme (ICE)-Related Protease (IRP) and<br>Its Possible Role in Apoptosis of Cultured Cerebellar Granule Neurons. Journal of Neuroscience, 1997,<br>17, 1561-1569.                                           | 1.7 | 94        |
| 178 | Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis<br>factor-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of<br>America, 1997, 94, 5073-5077.                                            | 3.3 | 204       |
| 179 | Bcl-2 acts upstream of the PARP protease and prevents its activation. Cell Death and Differentiation, 1997, 4, 29-33.                                                                                                                                                        | 5.0 | 34        |
| 180 | Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Current Biology, 1997, 7, 901-904.                                                                                                               | 1.8 | 334       |

| #   | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Overexpression of Human poly(ADP-Ribose) Polymerase in Transfected Hamster Cells Leads to<br>Increased Poly(ADP-Ribosyl)ation and Cellular Sensitization to gamma irradiation. FEBS Journal, 1997,<br>244, 15-20.                                                                             | 0.2 | 46        |
| 182 | Transcriptional Regulation of the Rat Poly(ADP-ribose) Polymerase Gene by Sp1. FEBS Journal, 1997, 250, 342-353.                                                                                                                                                                              | 0.2 | 24        |
| 183 | Analysis of poly(ADP-ribose) glycohydrolase activity in nuclear extracts from mammalian cells. BBA -<br>Proteins and Proteomics, 1997, 1338, 60-68.                                                                                                                                           | 2.1 | 21        |
| 184 | A microassay for the detection of low levels of cytochrome P450 O-deethylation activities with alkoxyresorufin substrates. Molecular and Cellular Biochemistry, 1997, 175, 125-129.                                                                                                           | 1.4 | 13        |
| 185 | Determination of genotoxicity of the metabolites of the pesticides Guthion, Sencor, Lorox, Reglone,<br>Daconil and Admire by 32P-postlabeling. Molecular and Cellular Biochemistry, 1997, 169, 177-184.                                                                                       | 1.4 | 58        |
| 186 | Purification of the Death Substrate Poly(ADP-ribose) Polymerase. Analytical Biochemistry, 1997, 249, 106-108.                                                                                                                                                                                 | 1.1 | 8         |
| 187 | Identification of a 116 kDa protein able to bind 1,3-bis(2-chloroethyl)-1-nitrosourea-damaged DNA as poly(ADP-ribose) polymerase. Mutation Research DNA Repair, 1996, 362, 41-50.                                                                                                             | 3.8 | 9         |
| 188 | Complete inhibition of poly(ADP-ribose) polymerase activity prevents the recovery of C3H1OT1/2 cells from oxidative stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 1-7.                                                                                         | 1.9 | 32        |
| 189 | Alteration of the Nucleolar Localization of Poly(ADP-ribose) Polymerase upon Treatment with<br>Transcription Inhibitors. Experimental Cell Research, 1996, 227, 146-153.                                                                                                                      | 1.2 | 61        |
| 190 | Bcl-2 Overexpression Blocks Activation of the Death Protease CPP32/Yama/Apopain. Biochemical and Biophysical Research Communications, 1996, 221, 340-345.                                                                                                                                     | 1.0 | 63        |
| 191 | Granzyme B/Perforin-Mediated Apoptosis of Jurkat Cells Results in Cleavage of Poly(ADP-ribose)<br>Polymerase to the 89-kDa Apoptotic Fragment and Less Abundant 64-kDa Fragment. Biochemical and<br>Biophysical Research Communications, 1996, 227, 658-665.                                  | 1.0 | 101       |
| 192 | Different Cleavage Pattern for Poly(ADP-Ribose) Polymerase during Necrosis and Apoptosis in HL-60<br>Cells. Biochemical and Biophysical Research Communications, 1996, 229, 838-844.                                                                                                          | 1.0 | 151       |
| 193 | Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1972-1976.                                                                                                              | 3.3 | 179       |
| 194 | Cleavage of lamin A by Mch2 alpha but not CPP32: multiple interleukin 1 beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8395-8400. | 3.3 | 509       |
| 195 | ICE-LAP6, a Novel Member of the ICE/Ced-3 Gene Family, Is Activated by the Cytotoxic T Cell Protease<br>Granzyme B. Journal of Biological Chemistry, 1996, 271, 16720-16724.                                                                                                                  | 1.6 | 246       |
| 196 | prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2.<br>Biochemical Journal, 1996, 316, 25-28.                                                                                                                                                   | 1.7 | 206       |
| 197 | Cytotoxic T-cell-derived granzyme B activates the apoptotic protease ICE-LAP3. Current Biology, 1996, 6, 897-899.                                                                                                                                                                             | 1.8 | 103       |
| 198 | Association of poly(ADP-ribose) polymerase with nuclear subfractions catalyzed with sodium<br>tetrathionate and hydrogene peroxide crosslinks. Molecular and Cellular Biochemistry, 1996, 159,<br>155-161.                                                                                    | 1.4 | 8         |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Molecular Ordering of the Cell Death Pathway. Journal of Biological Chemistry, 1996, 271, 4573-4576.                                                                                                                 | 1.6  | 536       |
| 200 | CrmA/SPI-2 Inhibition of an Endogenous ICE-related Protease Responsible for Lamin A Cleavage and Apoptotic Nuclear Fragmentation. Journal of Biological Chemistry, 1996, 271, 32487-32490.                           | 1.6  | 68        |
| 201 | High-Performance Electrophoresis Chromatography. , 1996, 59, 371-380.                                                                                                                                                |      | 0         |
| 202 | Temporal changes in chromatin, intracellular calcium, and poly(ADP-ribose) polymerase during<br>Sindbis virus-induced apoptosis of neuroblastoma cells. Journal of Virology, 1996, 70, 2215-2220.                    | 1.5  | 54        |
| 203 | Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic<br>execution Proceedings of the National Academy of Sciences of the United States of America, 1995, 92,<br>9042-9046. | 3.3  | 494       |
| 204 | Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends<br>in Biochemical Sciences, 1995, 20, 405-411.                                                                   | 3.7  | 582       |
| 205 | Detection of Poly(ADP-Ribose) Polymerase and Its Apoptosis-Specific Fragment by a Nonisotopic<br>Activity–Western Blot Technique. Analytical Biochemistry, 1995, 232, 251-254.                                       | 1.1  | 47        |
| 206 | Methods for Biochemical Study of Poly(ADP-Ribose) Metabolism in Vitro and in Vivo. Analytical<br>Biochemistry, 1995, 227, 1-13.                                                                                      | 1.1  | 171       |
| 207 | Rapid Removal of Nonspecific Background in Silver-Stained Polyacrylamide Gel. Analytical<br>Biochemistry, 1995, 232, 138-140.                                                                                        | 1.1  | 8         |
| 208 | Comparative study of DNA adducts levels in white sucker fish (Catostomus commersoni) from the basin of the St. Lawrence River (Canada). Molecular and Cellular Biochemistry, 1995, 148, 133-138.                     | 1.4  | 27        |
| 209 | Isolation of genomic DNA from the earthworm speciesEisenia fetida. Molecular and Cellular<br>Biochemistry, 1995, 142, 19-23.                                                                                         | 1.4  | 7         |
| 210 | Equilibrium model in an in vitro poly(ADP-ribose) turnover system. Biochimica Et Biophysica Acta Gene<br>Regulatory Mechanisms, 1995, 1264, 201-208.                                                                 | 2.4  | 12        |
| 211 | 32P-postlabeling determination of DNA adducts in the earthworm Lumbricus terrestris exposed to PAH-contaminated soils. Bulletin of Environmental Contamination and Toxicology, 1995, 54, 654-661.                    | 1.3  | 30        |
| 212 | The Baculovirus p35 Protein Inhibits Fas- and Tumor Necrosis Factor-induced Apoptosis. Journal of<br>Biological Chemistry, 1995, 270, 16526-16528.                                                                   | 1.6  | 308       |
| 213 | The effect of niacin deficiency on diethylnitrosamineâ€induced hepatic poly(ADPâ€ribose) levels and altered hepatic foci in the fischerâ€344 rat. Nutrition and Cancer, 1995, 24, 111-119.                           | 0.9  | 18        |
| 214 | DNA base excision repair of 5-hydroxymethyl-2′-deoxyuridine stimulates poly(ADP-ribose) synthesis in<br>Chinese hamster cells. Carcinogenesis, 1995, 16, 1173-1179.                                                  | 1.3  | 7         |
| 215 | Biochemical properties and function of poly(ADP-ribose) glycohydrolase. Biochimie, 1995, 77, 433-438.                                                                                                                | 1.3  | 32        |
| 216 | Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell, 1995, 81, 801-809.                                                     | 13.5 | 2,396     |

| #   | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Poly(ADP-ribose) catabolism in mammalian cells. Molecular and Cellular Biochemistry, 1994, 138, 45-52.                                                                                                                              | 1.4  | 13        |
| 218 | Purification of Poly(ADP-Ribose) Glycohydrolase and Detection of Its Isoforms by a Zymogram<br>Following One- or Two-Dimensional Electrophoresis. Analytical Biochemistry, 1994, 218, 265-272.                                      | 1.1  | 49        |
| 219 | Erasable Blot of Poly(ADP-ribose) Polymerase. Analytical Biochemistry, 1994, 218, 470-473.                                                                                                                                          | 1.1  | 25        |
| 220 | One-Step Protein Purification Using Micropreparative Electrophoresis Fully Compatible with Protein Microsequencing. Analytical Biochemistry, 1994, 221, 418-420.                                                                    | 1.1  | 4         |
| 221 | Autoantibodies Reacting with Poly(ADP-Ribose) and with a Zinc-Finger Functional Domain of<br>Poly(ADP-Ribose) Polymerase Involved in the Recognition of Damaged DNA. Clinical Immunology and<br>Immunopathology, 1994, 73, 187-196. | 2.1  | 43        |
| 222 | Mode of action of poly(ADP-ribose) glycohydrolase. Biochimica Et Biophysica Acta Gene Regulatory<br>Mechanisms, 1994, 1219, 342-350.                                                                                                | 2.4  | 115       |
| 223 | Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature, 1994, 371, 346-347.                                                                                                                       | 13.7 | 2,471     |
| 224 | Dual Function for Poly(ADP-ribose) Synthesis in Response to DNA Strand Breakage. Biochemistry, 1994, 33, 7099-7106.                                                                                                                 | 1.2  | 167       |
| 225 | The role of poly(ADP-ribose) metabolism in response to active oxygen cytotoxicity. Biochimica Et<br>Biophysica Acta - Molecular Cell Research, 1994, 1221, 215-220.                                                                 | 1.9  | 17        |
| 226 | Poly(ADP-ribose) catabolism in mammalian cells. , 1994, , 45-52.                                                                                                                                                                    |      | 7         |
| 227 | Molecular and biochemical features of poly (ADP-ribose) metabolism. Molecular and Cellular<br>Biochemistry, 1993, 122, 171-193.                                                                                                     | 1.4  | 311       |
| 228 | The US-1 element from the gene encoding rat poly (ADP-ribose) polymerase binds the transcription factor Sp1. FEBS Journal, 1993, 215, 73-80.                                                                                        | 0.2  | 21        |
| 229 | Expression in Escherichia coli of the 36 kDa domain of poly(ADP-ribose) polymerase and investigation of its DNA binding properties. BBA - Proteins and Proteomics, 1993, 1163, 49-53.                                               | 2.1  | 6         |
| 230 | Diethylnitrosamine administration in vivo increases hepatic poly(ADP-ribose) levels in rats: results of<br>a modified technique for poly(ADP-ribose) measurement. Carcinogenesis, 1993, 14, 2513-2516.                              | 1.3  | 13        |
| 231 | Resistance of ADP-ribosylated histones and HMG proteins to proteases. Biochemistry and Cell Biology, 1992, 70, 1258-1267.                                                                                                           | 0.9  | 3         |
| 232 | Poly(ADP-ribosyl)ation of chromatin in an in-vitro poly(ADP-ribose)-turnover system. Biochimica Et<br>Biophysica Acta - Molecular Cell Research, 1992, 1137, 171-181.                                                               | 1.9  | 27        |
| 233 | Structural analysis of the putative regulatory region of the rat gene encoding poly(ADP-ribose) polymerase. FEBS Letters, 1992, 302, 269-273.                                                                                       | 1.3  | 17        |
| 234 | Rearrangements of the nucleosome structure in chromatin by poly(ADP-ribose). BBA - Proteins and Proteomics, 1992, 1121, 317-324.                                                                                                    | 2.1  | 18        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Proteolytic Cleavage of Poly(ADP-Ribose) Polymerase in Human Leukemia Cells Treated with Etoposide<br>and other Cytotoxic Agents. , 1992, , 260-268.                                                   |     | 1         |
| 236 | Enzymatic properties of poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase on chromatin. , 1992, , 312-315.                                                                               |     | 0         |
| 237 | Automodification and NAD ASE Activity of Poly(ADP- Ribose) Polymerase. , 1992, , 351-354.                                                                                                              |     | 0         |
| 238 | Analysis of the activation of poly(ADP-ribose) polymerase by various types of DNA. Biochemistry and<br>Cell Biology, 1991, 69, 577-580.                                                                | 0.9 | 9         |
| 239 | Association of poly(ADP-ribose) polymerase with the nuclear matrix: The role intermolecular<br>disulfide bond formation, RNA retention, and cell type. Experimental Cell Research, 1991, 192, 524-535. | 1.2 | 56        |
| 240 | Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity. BBA - Proteins and Proteomics, 1991, 1078, 179-186.                            | 2.1 | 87        |
| 241 | An affinity matrix for the purification of poly(ADP-ribose) glycohydrolase. Nucleic Acids Research, 1990, 18, 4691-4694.                                                                               | 6.5 | 50        |
| 242 | Stimulation of poly(ADP-ribose) synthesis by free radicals in C3H10T1/2 cells: relationship with NAD metabolism and DNA breakage. Biochemistry and Cell Biology, 1990, 68, 602-608.                    | 0.9 | 28        |
| 243 | Reconstitution of an in vitro poly(ADP-ribose) turnover system. Biochimica Et Biophysica Acta Gene<br>Regulatory Mechanisms, 1990, 1049, 45-58.                                                        | 2.4 | 30        |
| 244 | Expression inE.coliof the catalytic domain of rat poly(ADP-ribose)polymerase. FEBS Letters, 1990, 264, 81-83.                                                                                          | 1.3 | 6         |
| 245 | Poly(ADP-ribose)polymerase: a novel finger protein. Nucleic Acids Research, 1989, 17, 4689-4698.                                                                                                       | 6.5 | 116       |
| 246 | Cloning of rodent cDNA encoding the poly(ADP-ribose) polymerase catalytic domain and analysis of mRNA levels during the cell cycle. Biochemistry and Cell Biology, 1989, 67, 653-660.                  | 0.9 | 28        |
| 247 | Localization of the Zinc-Binding Sites in the DNA-Binding Domain of the Bovine Poly(ADP-Ribose)<br>Polymerase. , 1989, , 89-93.                                                                        |     | 3         |
| 248 | Monoclonal Antibodies Against Poly(ADP-Ribose) Polymerase: Epitope Mapping, Inhibition of Activity and Interspecies Immunoreactivity. , 1989, , 76-80.                                                 |     | 0         |
| 249 | Hyperthermia and Poly(ADP-ribose) Metabolism. , 1989, , 403-407.                                                                                                                                       |     | 1         |
| 250 | Poly (ADP-Ribosyl) Ation Reactions and Modulation of Chromatin Structure. , 1989, , 365-377.                                                                                                           |     | 0         |
| 251 | Reconstitution of an In Vitro Poly(ADP-Ribose) Turnover System. , 1989, , 57-61.                                                                                                                       |     | 0         |
| 252 | Immunoelectron microscopical distribution of poly(ADP-ribose)polymerase in the mammalian cell nucleus*1. Experimental Cell Research, 1988, 179, 517-526.                                               | 1.2 | 37        |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Structural and functional analysis of poly(ADP ribose) polymerase: an immunological study.<br>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1988, 950, 147-160.         | 2.4 | 111       |
| 254 | Cell cycle regulation of poly(ADP-ribose) synthetase in FR3T3 cells. Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 1988, 968, 275-282.                                | 1.9 | 18        |
| 255 | Review: Modulation of chromatin structure by poly(ADP-ribosyl)ation. Biochemistry and Cell Biology, 1988, 66, 626-635.                                                              | 0.9 | 128       |
| 256 | Rapid assay of poly(ADP-ribose) glycohydrolase. Biochemistry and Cell Biology, 1987, 65, 668-673.                                                                                   | 0.9 | 60        |
| 257 | Poly(ADP-ribose) accessibility to poly(ADP-ribose) glycohydrolase activity on poly(ADP-ribosyl)ated nucleosomal proteins. Biochemistry and Cell Biology, 1986, 64, 146-153.         | 0.9 | 24        |
| 258 | Possible role of ADP-ribosylation of adenovirus core proteins in virus infection. Virus Research, 1986,<br>4, 313-329.                                                              | 1.1 | 26        |
| 259 | Production and characterization of monoclonal antibodies specific for the functional domains of poly(ADP-ribose) polymerase. Biochemistry and Cell Biology, 1986, 64, 368-376.      | 0.9 | 17        |
| 260 | Poly(ADP-ribosyl)ation of chromatin: kinetics of relaxation and its effect on chromatin solubility.<br>Canadian Journal of Biochemistry and Cell Biology, 1985, 63, 764-773.        | 1.3 | 18        |
| 261 | Sequential ADP-ribosylation pattern of nucleosomal histones. ADP-ribosylation of nucleosomal histones. FEBS Journal, 1985, 146, 277-285.                                            | 0.2 | 74        |
| 262 | Muscarinic cholinergic receptors in pancreatic acinar carcinoma of rat. International Journal of Cancer, 1985, 35, 493-497.                                                         | 2.3 | 6         |
| 263 | Poly ADP-ribosylation and DNA strand breakage in SV40 minichromosomes. Carcinogenesis, 1985, 6, 283-287.                                                                            | 1.3 | 16        |
| 264 | Non-histone chromosomal protein acceptors for poly(ADP)-ribose in phorbol-12-myristate-13-acetate treated mouse embryo fibroblasts (C3H10T1/2). Carcinogenesis, 1985, 6, 1489-1494. | 1.3 | 27        |
| 265 | Tumor promoter phorbol-12-myristate-13-acetate induces poly ADP-ribosylation in human monocytes.<br>Biochemical and Biophysical Research Communications, 1985, 126, 1208-1214.      | 1.0 | 42        |
| 266 | Modulation of rat pancreatic muscarinic cholinergic receptors by caerulein. Biochemical<br>Pharmacology, 1985, 34, 1057-1063.                                                       | 2.0 | 5         |
| 267 | Poly(ADP-Ribose) Glycohydrolase Activity Causes Recondensation of Relaxed Poly(ADP-Ribosyl)ated<br>Polynucleosomes. Proceedings in Life Sciences, 1985, , 190-196.                  | 0.5 | 2         |
| 268 | Effect of Poly(ADP-Ribosyl)ation on Native Polynucleosomes, H1-Depleted Polynucleosomes, Core<br>Particles, and H1-DNA Complexes. Proceedings in Life Sciences, 1985, , 180-189.    | 0.5 | 3         |
| 269 | Changes in Acetylcholinesterase and Cholinesterase Activities in Rat Pancreas during Postnatal<br>Development. Pharmacology, 1984, 29, 40-46.                                       | 0.9 | 4         |
| 270 | Modulation of rat pancreatic amylase secretion and muscarinic receptor populations by chronic bethanechol treatment. European Journal of Pharmacology, 1983, 95, 215-223.           | 1.7 | 21        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Chromosomal protein poly(ADP-ribosyl)ation in pancreatic nucleosomes. Canadian Journal of<br>Biochemistry, 1982, 60, 295-305.                                                                                                 | 1.4 | 26        |
| 272 | Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 3423-3427.                                      | 3.3 | 473       |
| 273 | Modulation of pancreatic muscarinic receptors by weaning. Life Sciences, 1982, 30, 253-257.                                                                                                                                   | 2.0 | 4         |
| 274 | Hyper(ADP-ribosyl)ation of histone H1. Canadian Journal of Biochemistry, 1982, 60, 1085-1094.                                                                                                                                 | 1.4 | 25        |
| 275 | Adenosine Diphosphate Ribosylation of Chickenâ€Erythrocyte Histones H1, H5 and Highâ€Mobilityâ€Group<br>Proteins by Purified Calfâ€Thymus Poly(adenosinediphosphateâ€ribose) Polymerase. FEBS Journal, 1982, 127,<br>437-442. | 0.2 | 55        |
| 276 | Poly(ADP-ribose) polymerase activity in mouse cells which exhibit temperature-sensitive DNA synthesis.<br>Nucleic Acids and Protein Synthesis, 1981, 653, 271-275.                                                            | 1.7 | 3         |
| 277 | Maturation of muscarinic agonist receptors in rat developing pancreas and its relation to maximal enzyme secretion. Life Sciences, 1981, 29, 2771-2779.                                                                       | 2.0 | 12        |
| 278 | PARALLEL MATURATION OF THE PANCREATIC SECRETORY RESPONSE TO CHOLINERGIC STIMULATION AND THE MUSCARINIC RECEPTOR POPULATION. British Journal of Pharmacology, 1981, 73, 347-354.                                               | 2.7 | 24        |
| 279 | Distribution of Muscarinic Receptors in the Digestive Tract Organs <sup>1</sup> . Pharmacology, 1981, 22, 189-195.                                                                                                            | 0.9 | 32        |
| 280 | Separation of poly(ADP-ribosylated) nuclear proteins by polyacrylamide gel electrophoresis at acidic pH and low temperature. Analytical Biochemistry, 1981, 114, 330-335.                                                     | 1.1 | 10        |
| 281 | ADP-ribosylation of rye histones. Canadian Journal of Biochemistry, 1980, 58, 692-695.                                                                                                                                        | 1.4 | 17        |
| 282 | ADP-ribosylation of pancreatic histone H1 and of other histones. Canadian Journal of Biochemistry, 1980, 58, 509-515.                                                                                                         | 1.4 | 18        |
| 283 | Muscarinic Receptors of the Pancreas: a Correlation between Displacement of<br>( <sup>3</sup> H)-Quinuclidinyl Benzilate Binding and Amylase Secretion. Pharmacology, 1979, 18,<br>263-270.                                   | 0.9 | 20        |
| 284 | A convenient method for the ATPase assay. Analytical Biochemistry, 1978, 85, 86-89.                                                                                                                                           | 1.1 | 375       |
| 285 | Properties of poly(ADP-ribose) synthetase from rat pancreas and poly(ADP-ribosylation) of basic nuclear proteins. Canadian Journal of Biochemistry, 1978, 56, 784-790.                                                        | 1.4 | 26        |
| 286 | Effect of Early Weaning of the Neonatal Rat on Pancreatic Acinar Cell Responsiveness to Urecholine.<br>Digestion, 1978, 17, 323-331.                                                                                          | 1.2 | 6         |
| 287 | Delayed Weaning and Denial of Solid Food Nibbling upon Pancreatic Acinar Cell Responsiveness to<br>Urecholine in Neonatal Rats. Digestion, 1978, 18, 93-102.                                                                  | 1.2 | 6         |
| 288 | COMPARATIVE INHIBITORY EFFECTS OF 3â€QUINUCLIDINYL BENZILATE (QNB) AND ATROPINE ON AMYLASE<br>RELEASE FROM RAT PANCREAS. British Journal of Pharmacology, 1977, 61, 97-100.                                                   | 2.7 | 10        |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Adenosine Diphosphoribosylation of Certain Basic Chromosomal Proteins in Isolated Trout Testis<br>Nuclei. FEBS Journal, 1977, 77, 11-21.                                              | 0.2 | 86        |
| 290 | Thyrotropin-releasing hormone receptor: Its partial purification from bovine anterior pituitary gland and its close association with adenyl cyclase. FEBS Letters, 1972, 20, 283-286. | 1.3 | 38        |