
Andreas Liese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4726139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tropical agroindustrial biowaste revalorization through integrative biorefineries—review part II: pineapple, sugarcane and banana by-products in Costa Rica. Biomass Conversion and Biorefinery, 2024, 14, 4391-4418.	4.6	8
2	Tropical agroindustrial biowaste revalorization through integrative biorefineries—review part I: coffee and palm oil by-products. Biomass Conversion and Biorefinery, 2023, 13, 1469-1487.	4.6	13
3	Process Intensification as Game Changer in Enzyme Catalysis. Frontiers in Catalysis, 2022, 2, .	3.9	19
4	Enhanced CO2 fixation in the biocatalytic carboxylation of resorcinol: Utilization of amines for amine scrubbing and in situ product precipitation. Biochemical Engineering Journal, 2021, 166, 107825.	3.6	9
5	Comparative investigation of fine bubble and macrobubble aeration on gas utilityÂand biotransformation productivity. Biotechnology and Bioengineering, 2021, 118, 130-141.	3.3	18
6	Microbubble enhanced mass transfer efficiency of CO ₂ capture utilizing aqueous triethanolamine for enzymatic resorcinol carboxylation. RSC Advances, 2021, 11, 4087-4096.	3.6	18
7	<scp>Multiâ€enzyme</scp> cascade reaction in a miniplant <scp>twoâ€phaseâ€system</scp> : Model validation and mathematical optimization. AICHE Journal, 2021, 67, e17158.	3.6	10
8	Enzyme Cascade Reaction Monitoring and Control. , 2021, , 141-163.		0
9	Evaluation of process integration for the intensification of a biotechnological process. Chemical Engineering and Processing: Process Intensification, 2021, 167, 108506.	3.6	7
10	Structureâ€Performance Guided Design of Sustainable Plasticizers from Biorenewable Feedstocks. European Journal of Organic Chemistry, 2021, 2021, 6086-6096.	2.4	5
11	In situ monitoring of the biocatalysed partial hydrolysis of cocoa butter and palm oil fraction. International Journal of Food Science and Technology, 2020, 55, 1265-1271.	2.7	5
12	Influence of pressure and dispersant on oil biodegradation by a newly isolated Rhodococcus strain from deep-sea sediments of the gulf of Mexico. Marine Pollution Bulletin, 2020, 150, 110683.	5.0	25
13	Fatty alcohol synthesis from fatty acids at mild temperature by subsequent enzymatic esterification and metal-catalyzed hydrogenation. Organic and Biomolecular Chemistry, 2020, 18, 7862-7867.	2.8	2
14	Towards bio-based plasticizers with reduced toxicity: Synthesis and performance testing of a 3-methylphthalate. Sustainable Chemistry and Pharmacy, 2020, 18, 100319.	3.3	5
15	A Multi-Enzyme Cascade for the Production of High-Value Aromatic Compounds. Catalysts, 2020, 10, 1216.	3.5	12
16	30 Jahre sichere Gentechnik in Deutschland. Angewandte Chemie, 2020, 132, 13772-13773.	2.0	0
17	Countercurrently Operated Reactive Extractor with an Additively Manufactured Enzyme Carrier Structure. Organic Process Research and Development, 2020, 24, 1621-1628.	2.7	8
18	Biocatalytic oxyfunctionalization of butane in a bubble olumn reactor. Chemie-Ingenieur-Technik, 2020_92_1211-1211	0.8	0

#	Article	IF	CITATIONS
19	Enzymatic Oxidation of Butane to 2â€Butanol in a Bubble Column. ChemCatChem, 2020, 12, 3666-3669.	3.7	13
20	FTIR based kinetic characterisation of an acid-catalysed esterification of 3-methylphthalic anhydride and 2-ethylhexanol. Analytical Methods, 2020, 12, 3137-3144.	2.7	4
21	Influence of oil, dispersant, and pressure on microbial communities from the Gulf of Mexico. Scientific Reports, 2020, 10, 7079.	3.3	15
22	30 Years of Safe Genetic Engineering in Germany. Angewandte Chemie - International Edition, 2020, 59, 13668-13669.	13.8	0
23	Fermentative oxidation of butane in bubble column reactors. Biochemical Engineering Journal, 2020, 155, 107486.	3.6	4
24	Enzyme Immobilization on Synthesized Nanoporous Silica Particles and their Application in a Biâ€enzymatic Reaction. ChemCatChem, 2020, 12, 2245-2252.	3.7	21
25	Biocatalyst Immobilization by Anchor Peptides on an Additively Manufacturable Material. Organic Process Research and Development, 2019, 23, 1852-1859.	2.7	28
26	Determination of trace amounts with ATR FTIR spectroscopy and chemometrics: 5-(hydroxymethyl)furfural in honey. Talanta, 2019, 204, 1-5.	5.5	20
27	Product recovery of an enzymatically synthesized (â^')-menthol ester in a deep eutectic solvent. Bioprocess and Biosystems Engineering, 2019, 42, 1385-1389.	3.4	19
28	Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends in Biotechnology, 2019, 37, 943-959.	9.3	262
29	Optimization of solvent-free enzymatic esterification in eutectic substrate reaction mixture. Biotechnology Reports (Amsterdam, Netherlands), 2019, 22, e00333.	4.4	21
30	Fine Bubbleâ€based CO 2 Capture Mediated by Triethanolamine Coupled to Whole Cell Biotransformation. Chemie-Ingenieur-Technik, 2019, 91, 1822-1826.	0.8	7
31	Mechanistic and kinetics elucidation of Mg2+/ATP molar ratio effect on glycerol kinase. Molecular Catalysis, 2018, 445, 36-42.	2.0	6
32	Synthesis of (-)-menthol fatty acid esters in and from (-)-menthol and fatty acids – novel concept for lipase catalyzed esterification based on eutectic solvents. Molecular Catalysis, 2018, 458, 67-72.	2.0	57
33	Enzymkinetik. , 2018, , 53-75.		1
34	Enzymreaktoren und Prozessführung. , 2018, , 77-101.		0
35	Kinetic insights into ϵ aprolactone synthesis: Improvement of an enzymatic cascade reaction. Biotechnology and Bioengineering, 2017, 114, 1215-1221.	3.3	50
36	An alternative approach towards poly-Îμ-caprolactone through a chemoenzymatic synthesis: combined hydrogenation, bio-oxidations and polymerization without the isolation of intermediates. Green Chemistry, 2017, 19, 1286-1290.	9.0	37

#	Article	IF	CITATIONS
37	Enzymatic resolution of an amine under solvent-free conditions with diethyl malonate as reagent for acylation. Sustainable Chemistry and Pharmacy, 2017, 5, 42-45.	3.3	9
38	Biocatalytic Phosphorylations of Metabolites: Past, Present, and Future. Trends in Biotechnology, 2017, 35, 452-465.	9.3	44
39	Simultaneous local determination of mass transfer and residence time distributions in organic multiphase systems. Chemical Engineering Journal, 2017, 321, 635-641.	12.7	Ο
40	<i>In Situ</i> Separation of the Chiral Target Compound (<i>S</i>)-2-Pentanol in Biocatalytic Reactive Distillation. Industrial & amp; Engineering Chemistry Research, 2017, 56, 6451-6461.	3.7	7
41	Reaction engineering of biocatalytic (S)-naproxen synthesis integrating in-line process monitoring by Raman spectroscopy. Reaction Chemistry and Engineering, 2017, 2, 531-540.	3.7	12
42	Development and Scaling-Up of the Fragrance Compound 4-Ethylguaiacol Synthesis via a Two-Step Chemo-Enzymatic Reaction Sequence. Organic Process Research and Development, 2017, 21, 85-93.	2.7	36
43	Bioreaction Engineering Leading to Efficient Synthesis of Lâ€Glyceraldehydâ€3â€Phosphate. Biotechnology Journal, 2017, 12, 1600625.	3.5	9
44	Investigation of a green process for the polymerization of catechin. Preparative Biochemistry and Biotechnology, 2017, 47, 918-924.	1.9	22
45	Amineâ€Mediated Enzymatic Carboxylation of Phenols Using CO ₂ as Substrate Increases Equilibrium Conversions and Reaction Rates. Biotechnology Journal, 2017, 12, 1700332.	3.5	14
46	Enzyme- and Metal-Catalyzed Synthesis of a New Biobased Polyester. Organic Process Research and Development, 2017, 21, 1245-1252.	2.7	5
47	Improvement of the Process Stability of Arylmalonate Decarboxylase by Immobilization for Biocatalytic Profen Synthesis. Frontiers in Microbiology, 2017, 8, 448.	3.5	18
48	Highly Effective Inhibition of Biofilm Formation by the First Metagenome-Derived Al-2 Quenching Enzyme. Frontiers in Microbiology, 2016, 7, 1098.	3.5	50
49	8th International Congress on Biocatalysis (Biocat2016), Hamburg, Germany, 28 August–1 September, 2016. Catalysts, 2016, 6, 160.	3.5	О
50	A Fedâ€Batch Synthetic Strategy for a Threeâ€Step Enzymatic Synthesis of Polyâ€ïµâ€caprolactone. ChemCatChem, 2016, 8, 3446-3452.	3.7	50
51	In situ production and renewal of biocatalytic coatings for use in enzymatic reactive distillation. Chemical Engineering Journal, 2016, 306, 992-1000.	12.7	14
52	Process Characterization Studies for Solvent-Free Simultaneous Epoxidation and Transesterification of Fatty Acid Methyl Esters. Organic Process Research and Development, 2016, 20, 1930-1936.	2.7	12
53	Evaluation of the Substrate Scope of Benzoic Acid (De)carboxylases According to Chemical and Biochemical Parameters. ChemBioChem, 2016, 17, 1845-1850.	2.6	11
54	Process development for oxidations of hydrophobic compounds applying cytochrome P450 monooxygenases in-vitro. Journal of Biotechnology, 2016, 233, 143-150.	3.8	21

#	Article	IF	CITATIONS
55	Ortsaufgelöste Analytik in der enzymkatalysierten Reaktivrektifikation. Chemie-Ingenieur-Technik, 2016, 88, 1296-1296.	0.8	0
56	Deep Eutectic Solvents als neuartige Reaktionsmedien in der Biokatalyse. Chemie-Ingenieur-Technik, 2016, 88, 1337-1337.	0.8	0
57	Simultane Reaktion und Produktabtrennung in der Biokatalyse: Enzymatische Reaktivrektifikation zur Synthese chiraler Produkte. Chemie-Ingenieur-Technik, 2016, 88, 1329-1330.	0.8	0
58	Prozessentwicklung und Charakterisierung einer fermentativen Oxidation kurzkettiger Alkane. Chemie-Ingenieur-Technik, 2016, 88, 1250-1250.	0.8	0
59	Arylmalonate Decarboxylase atalyzed Asymmetric Synthesis of Both Enantiomers of Optically Pure Flurbiprofen. ChemCatChem, 2016, 8, 916-921.	3.7	24
60	The role of phase behavior in the enzyme catalyzed synthesis of glycerol monolaurate. RSC Advances, 2016, 6, 32422-32429.	3.6	12
61	One-pot enzymatic reaction sequence for the syntheses of d-glyceraldehyde 3-phosphate and l-glycerol 3-phosphate. Journal of Molecular Catalysis B: Enzymatic, 2016, 124, 77-82.	1.8	8
62	Original enzyme-catalyzed synthesis of chalcones: Utilization of hydrolase promiscuity. Journal of the Serbian Chemical Society, 2016, 81, 1231-1237.	0.8	3
63	Lipaseâ€catalyzed synthesis of glucoseâ€6â€ <i>O</i> â€hexanoate in deep eutectic solvents. European Journal of Lipid Science and Technology, 2015, 117, 161-166.	1.5	68
64	Biocatalytic Access to Chiral Polyesters by an Artificial Enzyme Cascade Synthesis. ChemCatChem, 2015, 7, 3951-3955.	3.7	47
65	Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe–Schmitt synthesis. FEBS Journal, 2015, 282, 1334-1345.	4.7	35
66	Reversibility of asymmetric catalyzed C–C bond formation by benzoylformate decarboxylase. Catalysis Science and Technology, 2015, 5, 2418-2426.	4.1	3
67	An Enzyme Cascade Synthesis of εâ€Caprolactone and its Oligomers. Angewandte Chemie - International Edition, 2015, 54, 2784-2787.	13.8	175
68	Eine Enzymkaskade zur Synthese von ε aprolacton und dessen Oligomeren. Angewandte Chemie, 2015, 127, 2825-2828.	2.0	31
69	Enzymatic Reactive Distillation: Kinetic Resolution of <i>rac</i> -2-Pentanol with Biocatalytic Coatings on Structured Packings. Industrial & Engineering Chemistry Research, 2015, 54, 9458-9467.	3.7	21
70	Single-Pot Enzymatic Reaction Sequence for the Synthesis ofD-Glyceraldehyde-3-Phosphate. Chemie-Ingenieur-Technik, 2014, 86, 1424-1424.	0.8	1
71	Steuerung der ReaktionsselektivitĤvon Biotransformationen mittels Online-FTIR-Analytik. Chemie-Ingenieur-Technik, 2014, 86, 1583-1584.	0.8	0
72	<i>Pseudomonas aeruginosa</i> Biofilm Growth Inhibition on Medical Plastic Materials by Immobilized Esterases and Acylase. ChemBioChem, 2014, 15, 1911-1919.	2.6	13

#	Article	IF	CITATIONS
73	Novel μ-membrane module for online determination of the free fatty acid content in the dispersed phase of oil-in-water emulsions. Analytical and Bioanalytical Chemistry, 2014, 406, 3157-3166.	3.7	4
74	Strategies for reliable and improved large-scale production of Pyrococcus furiosus with integrated purification of hydrogenase I. Bioprocess and Biosystems Engineering, 2014, 37, 2475-2482.	3.4	2
75	Bioprocess Development. , 2014, , 549-562.		Ο
76	In Situ Microscopy for In-line Monitoring of the Enzymatic Hydrolysis of Cellulose. Analytical Chemistry, 2013, 85, 8121-8126.	6.5	13
77	Influence of the Reactor Configuration on the Enantioselectivity of a Kinetic Resolution. Chemie-Ingenieur-Technik, 2013, 85, 826-832.	0.8	3
78	A chemo-enzymatic route to synthesize (S)-Î ³ -valerolactone from levulinic acid. Applied Microbiology and Biotechnology, 2013, 97, 3865-3873.	3.6	31
79	Development of a Continuously Operating Process for the Enantioselective Synthesis of a βâ€Amino Acid Ester <i>via</i> a Solventâ€Free Chemoenzymatic Reaction Sequence. Advanced Synthesis and Catalysis, 2013, 355, 2391-2399.	4.3	19
80	Chemical Absorption of CO ₂ in Helically Wound Hollow Fiber Membrane Contactors. Chemie-Ingenieur-Technik, 2013, 85, 476-483.	0.8	6
81	Die Zukunft liegt in der interdisziplinÄ r en Forschung und Entwicklung. Chemie-Ingenieur-Technik, 2013, 85, 771-771.	0.8	0
82	Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews, 2013, 42, 6236.	38.1	555
83	Immobilization of glucose 6-phosphate dehydrogenase in silica-based hydrogels: A comparative study. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 220-228.	1.8	25
84	Online-Analyse von enzymatischen Polykondensationsreaktionen in BlasensÃ ¤ lenreaktoren mittels ATR-FTIR-Spektroskopie. Chemie-Ingenieur-Technik, 2013, 85, 1016-1022.	0.8	6
85	Computational biotechnology: Prediction of competitive substrate inhibition of enzymes by buffer compounds with protein–ligand docking. Journal of Biotechnology, 2012, 161, 391-401.	3.8	15
86	Blasenfreie Begasung von Bioreaktoren: Erhöhung von Sauerstofftransferraten durch Dean-Wirbel. Chemie-Ingenieur-Technik, 2012, 84, 1213-1213.	0.8	0
87	Integration of Enzymatic Catalysts in a Reactive Distillation Column with Structured Packings. Industrial & Engineering Chemistry Research, 2012, 51, 11482-11489.	3.7	33
88	Generation of Dean vortices and enhancement of oxygen transfer rates in membrane contactors for different hollow fiber geometries. Journal of Membrane Science, 2012, 423-424, 342-347.	8.2	37
89	Kinetic investigation of a solventâ€free, chemoenzymatic reaction sequence towards enantioselective synthesis of a l²â€amino acid ester. Biotechnology and Bioengineering, 2012, 109, 1479-1489.	3.3	29
90	Kontinuierliche Produktion von Alkoholen mit Alkoholdehydrogenase und selektive Produktadsorption auf einer Festphase aus Aluminiumoxid. Chemie-Ingenieur-Technik, 2012, 84, 1330-1330.	0.8	0

#	Article	IF	CITATIONS
91	The Metagenome-Derived Enzymes LipS and LipT Increase the Diversity of Known Lipases. PLoS ONE, 2012, 7, e47665.	2.5	72
92	Simultaneous Determination of Mono-, Di-, and Triglycerides in Multiphase Systems by Online Fourier Transform Infrared Spectroscopy. Analytical Chemistry, 2011, 83, 9321-9327.	6.5	31
93	Coupled chemo(enzymatic) reactions in continuous flow. Beilstein Journal of Organic Chemistry, 2011, 7, 1449-1467.	2.2	78
94	Immobilization and characterization of benzoylformate decarboxylase from Pseudomonas putida on spherical silica carrier. Bioprocess and Biosystems Engineering, 2011, 34, 671-680.	3.4	6
95	Dissolving carbon dioxide in high viscous substrates to accelerate biocatalytic reactions. Biotechnology and Bioengineering, 2011, 108, 2765-2769.	3.3	3
96	In Situ Microscopy for Online Monitoring of Enzymatic Processes. Chemical Engineering and Technology, 2011, 34, 837-840.	1.5	10
97	In Situ Microscopy for Online Monitoring of Enzyme Supports and Twoâ€Phase Systems. Chemie-Ingenieur-Technik, 2011, 83, 884-887.	0.8	5
98	Laminar Mixing in Miniature Hollowâ€Fibre Membrane Reactors by using Secondary Flows (Part 1). Chemie-Ingenieur-Technik, 2011, 83, 1066-1073.	0.8	8
99	Influence of reaction conditions on the enantioselectivity of biocatalyzed C–C bond formations under high pressure conditions. Journal of Biotechnology, 2011, 152, 87-92.	3.8	19
100	Enzymatische Prozesse. , 2011, , 427-476.		1
101	Enzymkinetik. , 2011, , 67-97.		0
102	Biocatalysis: The Outcast. ChemCatChem, 2010, 2, 103-107.	3.7	34
103	Asymmetric Retroâ€Henry Reaction Catalyzed by Hydroxynitrile Lyase from <i>Hevea brasiliensis</i> . ChemCatChem, 2010, 2, 981-986.	3.7	30
104	Highlights in Biocatalysis. ChemCatChem, 2010, 2, 879-880.	3.7	10
105	Fluorescence spectroscopy as a novel method for on-line analysis of biocatalytic C–C bond formations. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 124-129.	1.8	7
106	Konzentrationsbestimmungen in hochviskosen Mehrphasensystemen durch FT-IR und Chemometrie. Chemie-Ingenieur-Technik, 2010, 82, 1427-1427.	0.8	1
107	Integriertes Downstream Processing in der Biokatalyse. Chemie-Ingenieur-Technik, 2010, 82, 1603-1603.	0.8	0
108	Influence of the hydrostatic pressure and pH on the asymmetric 2â€hydroxyketone formation catalyzed by <i>Pseudomonas putida</i> benzoylformate decarboxylase and variants thereof. Biotechnology and Bioengineering, 2010, 106, 18-26.	3.3	15

#	Article	IF	CITATIONS
109	Characterization of a wholeâ€cell catalyst coâ€expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of <scp>L</scp> â€glyceraldehyde. Biotechnology and Bioengineering, 2010, 106, 541-552.	3.3	54
110	Kinetic studies of the asymmetric Henry reaction catalyzed by hydroxynitrile lyase fromHevea brasiliensis. Biocatalysis and Biotransformation, 2010, 28, 348-356.	2.0	11
111	Scaleup of Lipase-Catalyzed Polyester Synthesis. Organic Process Research and Development, 2010, 14, 1118-1124.	2.7	38
112	Online Monitoring of Biotransformations in High Viscous Multiphase Systems by Means of FT-IR and Chemometrics. Analytical Chemistry, 2010, 82, 6008-6014.	6.5	26
113	Synthesis of a Novel Unsymmetrical Bisoxazoline Ligand with sp² Bridging Carbon. Synlett, 2009, 2009, 2589-2592.	1.8	2
114	Asymmetric synthesis of chiral 2-hydroxy ketones by coupled biocatalytic alkene oxidation and CC bond formation. Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 111-116.	1.8	17
115	Onlineâ€FTâ€IR zur Kinetikbestimmung und Prozesskontrolle von Biotransformationen in Mehrphasensystemen. Chemie-Ingenieur-Technik, 2009, 81, 1101-1101.	0.8	Ο
116	DBUâ€Stipendienschwerpunkt: "Nachhaltige Bioprozesseâ€i, Chemie-Ingenieur-Technik, 2009, 81, 1303-1304.	. 0.8	0
117	Characterisation of a Recombinant NADPâ€Dependent Glycerol Dehydrogenase from <i>Gluconobacter oxydans</i> and its Application in the Production of <scp>L</scp> â€Glyceraldehyde. ChemBioChem, 2009, 10, 1888-1896.	2.6	41
118	Chemically and enzymatically catalyzed synthesis of C6-C10alkyl benzoates. European Journal of Lipid Science and Technology, 2009, 111, 194-201.	1.5	15
119	Structural and Kinetic Studies on Native Intermediates and an Intermediate Analogue in Benzoylformate Decarboxylase Reveal a Least Motion Mechanism with an Unprecedented Short-Lived Predecarboxylation Intermediate. Biochemistry, 2009, 48, 3258-3268.	2.5	31
120	Practical application of different enzymes immobilized on sepabeads. Bioprocess and Biosystems Engineering, 2008, 31, 163-171.	3.4	71
121	Chemoenzymatic synthesis of the chiral side-chain of statins: application of an alcohol dehydrogenase catalysed ketone reduction on a large scale. Bioprocess and Biosystems Engineering, 2008, 31, 183-191.	3.4	53
122	Polyglycerolâ€5upported Co―and Mnâ€salen Complexes as Efficient and Recyclable Homogeneous Catalysts for the Hydrolytic Kinetic Resolution of Terminal Epoxides and Asymmetric Olefin Epoxidation. European Journal of Organic Chemistry, 2008, 2008, 2135-2141.	2.4	44
123	Enantioselective Cĩ£¿C Bond Ligation Using RecombinantEscherichia coli-Whole-Cell Biocatalysts. Advanced Synthesis and Catalysis, 2008, 350, 165-173.	4.3	39
124	Continuous Application of Polyglycerolâ€Supported Salen in a Membrane Reactor: Asymmetric Epoxidation of 6â€Cyanoâ€2,2â€dimethylchromene. Advanced Synthesis and Catalysis, 2008, 350, 919-925.	4.3	29
125	Chemometric modelling for process analyzers using just a single calibration sample. Chemometrics and Intelligent Laboratory Systems, 2008, 94, 118-122.	3.5	11
126	Novel immobilization routes for the covalent binding of an alcohol dehydrogenase from Rhodococcus ruber DSM 44541. Tetrahedron: Asymmetry, 2008, 19, 1171-1173.	1.8	31

#	Article	IF	CITATIONS
127	Reactor Concept for Lipase-Catalyzed Solvent-Free Conversion of Highly Viscous Reactants Forming Two-Phase Systems. Organic Process Research and Development, 2008, 12, 618-625.	2.7	103
128	Evaluation of the Laccase from Myceliophthora thermophila as Industrial Biocatalyst for Polymerization Reactions. Macromolecules, 2008, 41, 8520-8524.	4.8	52
129	Building Blocks. , 2007, 105, 133-173.		17
130	Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. Journal of Biotechnology, 2007, 132, 438-444.	3.8	57
131	Technische Anwendung von Enzymen: Weiße WÃ s che und Grüne Chemie. Chemie in Unserer Zeit, 2007, 41, 324-333.	0.1	3
132	Process development for the electroenzymatic synthesis of (R)-methylphenylsulfoxide by use of a 3-dimensional electrode. Biotechnology and Bioengineering, 2007, 98, 525-534.	3.3	54
133	Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part I: processes with isolated enzymes. Applied Microbiology and Biotechnology, 2007, 76, 237-248.	3.6	301
134	Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions. Applied Microbiology and Biotechnology, 2007, 76, 249-255.	3.6	207
135	Reaction Engineering of Benzaldehyde Lyase fromPseudomonas fluorescensCatalyzing Enantioselective Câ"C Bond Formation. Organic Process Research and Development, 2006, 10, 1172-1177.	2.7	49
136	The utilization of renewable resources in German industrial production. Biotechnology Journal, 2006, 1, 770-776.	3.5	26
137	Synthesis of enantiopure (5R)-hydroxyhexane-2-one with immobilised whole cells of Lactobacillus kefiri. Applied Microbiology and Biotechnology, 2006, 71, 289-293.	3.6	22
138	Preparative enantioselective synthesis of benzoins and (R)-2-hydroxy-1-phenylpropanone using benzaldehyde lyase. Journal of Molecular Catalysis B: Enzymatic, 2006, 38, 43-47.	1.8	57
139	Continuous Homogeneous Asymmetric Transfer Hydrogenation of Ketones: Lessons from Kinetics. Chemistry - A European Journal, 2006, 12, 1818-1823.	3.3	20
140	Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells. Biotechnology and Bioengineering, 2006, 95, 192-198.	3.3	63
141	Polyglycerol-Supported Chromium-Salen as a High-Loading Dendritic Catalyst for Stereoselective Diels–Alder Reactions. Advanced Synthesis and Catalysis, 2006, 348, 1760-1771.	4.3	29
142	History of Industrial Biotransformations - Dreams and Realities. , 2006, , 1-36.		29
143	Continuous Asymmetric Hydrogenation. , 2006, , 111-124.		8
144	Technische Chemie 2004. Nachrichten Aus Der Chemie, 2005, 53, 312-316.	0.0	4

#	Article	IF	CITATIONS
145	Activity and stability of Caldariomyces fumago chloroperoxidase modified by reductive alkylation, amidation and cross-linking. Enzyme and Microbial Technology, 2005, 37, 582-588.	3.2	26
146	Technical Application of Biological Principles in Asymmetric Catalysis. Advances in Biochemical Engineering/Biotechnology, 2005, 92, 197-224.	1.1	8
147	Biotechnological applications of hydrogenases. Current Opinion in Biotechnology, 2004, 15, 343-348.	6.6	108
148	Immobilization of benzaldehyde lyase and its application as a heterogeneous catalyst in the continuous synthesis of a chiral 2-hydroxy ketone. Tetrahedron: Asymmetry, 2004, 15, 2955-2958.	1.8	33
149	Optically Active Phospholanes as Substituents on Ferrocene and Chromium-Arene Complexes. European Journal of Inorganic Chemistry, 2004, 2004, 2235-2243.	2.0	21
150	First asymmetric electroenzymatic oxidation catalyzed by a peroxidase. Electrochemistry Communications, 2004, 6, 583-587.	4.7	73
151	Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reductionElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b4/b401065e/. Chemical Communications, 2004, , 1084.	4.1	138
152	Kinetic Examination and Simulation of GDP-β-l-fucose Synthetase Reaction Using NADPH or NADH. Biocatalysis and Biotransformation, 2004, 22, 49-56.	2.0	2
153	Resolution of 1,2-Diols by Enzyme-Catalyzed Oxidation with Anodic, Mediated Cofactor Regeneration in the Extractive Membrane Reactor:Â Gaining Insight by Adaptive Simulation. Organic Process Research and Development, 2004, 8, 213-218.	2.7	21
154	Modeling of reaction kinetics for reactor selection in the case of L-erythrulose synthesis. Bioprocess and Biosystems Engineering, 2003, 25, 285-290.	3.4	32
155	Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. Journal of Molecular Catalysis B: Enzymatic, 2003, 24-25, 39-52.	1.8	81
156	Membrane Aerated Hydrogenation: Enzymatic and Chemical Homogeneous Catalysis. Advanced Synthesis and Catalysis, 2003, 345, 679-683.	4.3	24
157	Is log P a Convenient Criterion to Guide the Choice of Solvents for Biphasic Enzymatic Reactions?. Angewandte Chemie, 2003, 115, 3101-3104.	2.0	27
158	Is log P a Convenient Criterion to Guide the Choice of Solvents for Biphasic Enzymatic Reactions?. Angewandte Chemie - International Edition, 2003, 42, 2993-2996.	13.8	115
159	In situ NAD+ regeneration using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator. Journal of Electroanalytical Chemistry, 2003, 541, 109-115.	3.8	69
160	Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 8. Pharmacological Optimization of Orally Bioavailable 2-Pyridone-Containing Peptidomimetics. Journal of Medicinal Chemistry, 2003, 46, 4572-4585.	6.4	105
161	Utilization of adsorption effects for the continuous reduction of NADP+with molecular hydrogen by Pyrococcus furiosus hydrogenase. Green Chemistry, 2003, 5, 697-700.	9.0	13
162	Construction and Characterisation of a Genetically Engineered Escherichia coli Strain for the Epoxide Hydrolase-catalysed Kinetic Resolution of Epoxides. Biocatalysis and Biotransformation, 2003, 21, 33-40.	2.0	1

#	Article	IF	CITATIONS
163	New Continuous Production Process for Enantiopure (2R,5R)-Hexanediol. Organic Process Research and Development, 2002, 6, 458-462.	2.7	53
164	Diastereoselective synthesis of optically active (2 R ,5 R)-hexanediol. Applied Microbiology and Biotechnology, 2002, 58, 595-599.	3.6	52
165	Enzymatic synthesis of all stereoisomers of 1-phenylpropane-1,2-diol. Tetrahedron: Asymmetry, 2002, 13, 1069-1072.	1.8	62
166	Optimization of the enzymatic synthesis of O -glycan core 2 structure by use of a genetic algorithm. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1031-1034.	2.2	7
167	Membrane reactor development for the kinetic resolution of ethyl 2-hydroxy-4-phenylbutyrate. Enzyme and Microbial Technology, 2002, 30, 673-681.	3.2	51
168	Reduction of ethyl 3-oxobutanoate using non-growing baker's yeast in a continuously operated reactor with cell retention. Enzyme and Microbial Technology, 2002, 31, 665-672.	3.2	21
169	Chemo-Enzymatic synthesis of the galili epitope Galα(1→3)Galβ(1→4)GlcNAc on a homogeneously soluble PEG polymer by a multi-Enzyme system. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2503-2506.	2.2	39
170	Kinetic resolution of chiral amines with ?-transaminase using an enzyme-membrane reactor. Biotechnology and Bioengineering, 2001, 73, 179-187.	3.3	86
171	Continuous Application of Chemzymes in a Membrane Reactor: Asymmetric Transfer Hydrogenation of Acetophenone. Advanced Synthesis and Catalysis, 2001, 343, 711-720.	4.3	99
172	Chemoenzymatic-Chemical Synthesis of a (2-3)-Sialyl T Threonine Building Block and Its Application to the Synthesis of the N-Terminal Sequence of Leukemia-Associated Leukosialin (CD 43). Angewandte Chemie - International Edition, 2001, 40, 2292-2295.	13.8	44
173	Chemoenzymatic-Chemical Synthesis of a (2-3)-Sialyl T Threonine Building Block and Its Application to the Synthesis of the N-Terminal Sequence of Leukemia-Associated Leukosialin (CD 43) This work was supported by the Deutsche Forschungsgemeinschaft, the Stiftung Rheinland Pfalz für Innovation, and the Fonds der Chemischen Industrie Angewandte Chemie - International Edition, 2001, 40, 2292-2295.	13.8	2
174	Enzymatic resolution of 1-phenyl-1,2-ethanediol by enantioselective oxidation: Overcoming product inhibition by continuous extraction. Biotechnology and Bioengineering, 2000, 51, 544-550.	3.3	91
175	Benzoylformate Decarboxylase fromPseudomonas putida as Stable Catalyst for the Synthesis of Chiral 2-Hydroxy Ketones. Chemistry - A European Journal, 2000, 6, 1483-1495.	3.3	159
176	Biokatalyse verädert chemische Produktionsprozesse. Chemie-Ingenieur-Technik, 2000, 72, 924-925.	0.8	0
177	Cyclodextrin-assisted Glycan Chain Extension on a Protected Glycosyl Amino Acid. Tetrahedron, 2000, 56, 5865-5869.	1.9	20
178	Industrial Biocatalysis:Â Past, Present, and Future. Organic Process Research and Development, 2000, 4, 286-290.	2.7	128
179	Asymmetric reductions in aqueous media: enzymatic synthesis in cyclodextrin containing buffers. Tetrahedron: Asymmetry, 1999, 10, 1681-1687.	1.8	38
180	Production of fine chemicals using biocatalysis. Current Opinion in Biotechnology, 1999, 10, 595-603.	6.6	123

#	ARTICLE	IF	CITATIONS
181	A novel reactor concept for the enzymatic reduction of poorly soluble ketones. Journal of Molecular Catalysis B: Enzymatic, 1998, 4, 91-99.	1.8	79
182	Basics of Bioreaction Engineering. , 0, , 57-91.		3
183	Reaction Technology in Asymmetric Synthesis. , 0, , 415-434.		Ο
184	The Enzyme Classification. , 0, , 37-62.		1
185	Retrosynthetic Biocatalysis. , 0, , 63-91.		2
186	Basics of Bioreaction Engineering. , 0, , 115-145.		14
187	Processes: Oxireductases EC 1. , 0, , 147-263.		20
188	Processes: Transferases EC 2., 0,, 264-272.		1
189	Processes: Hydrolases EC 3 - EC 3.1.1.3 to EC 3.4.17.2. , 0, , 273-349.		7
190	Processes: Lyases EC 4., 0,, 447-503.		9
191	Quantitative Analysis of Industrial Biotransformation. , 0, , 515-520.		7
192	Processes: Isomerases EC 5., 0,, 504-513.		0
193	Processes: Hydrolases EC 3 - EC 3.4.21.4 to EC 3.8.X.X. , 0, , 350-446.		Ο
194	Optimization of Industrial Enzymes by Molecular Engineering. , 0, , 93-114.		0
195	Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid. Beilstein Journal of Organic Chemistry, 0, 18, 567-579.	2.2	2