Basak Icli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4726069/publications.pdf Version: 2024-02-01

BASAK ICU

#	Article	IF	CITATIONS
1	MicroRNA-181b regulates NF-κB–mediated vascular inflammation. Journal of Clinical Investigation, 2012, 122, 1973-90.	3.9	398
2	Systemic Delivery of MicroRNA-181b Inhibits Nuclear Factor-κB Activation, Vascular Inflammation, and Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation Research, 2014, 114, 32-40.	2.0	263
3	MicroRNA-26a Regulates Pathological and Physiological Angiogenesis by Targeting BMP/SMAD1 Signaling. Circulation Research, 2013, 113, 1231-1241.	2.0	196
4	Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocrine Reviews, 2017, 38, 145-168.	8.9	141
5	MicroRNA-181b Improves Glucose Homeostasis and Insulin Sensitivity by Regulating Endothelial Function in White Adipose Tissue. Circulation Research, 2016, 118, 810-821.	2.0	108
6	Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. Journal of Molecular and Cellular Cardiology, 2016, 91, 151-159.	0.9	93
7	MicroRNA-615-5p Regulates Angiogenesis and Tissue Repair by Targeting AKT/eNOS (Protein Kinase) Tj ETQq1 1 Vascular Biology, 2019, 39, 1458-1474.	0.784314 1.1	rgBT /Overic 72
8	An emerging role for the miR-26 family in cardiovascular disease. Trends in Cardiovascular Medicine, 2014, 24, 241-248.	2.3	65
9	Computational Analysis of Targeting SARS-CoV-2, Viral Entry Proteins ACE2 and TMPRSS2, and Interferon Genes by Host MicroRNAs. Genes, 2020, 11, 1354.	1.0	56
10	MicroRNAâ€135aâ€3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells. FASEB Journal, 2019, 33, 5599-5614.	0.2	53
11	Bone marrow–derived CMPs and GMPs represent highly functional proangiogenic cells: implications for ischemic cardiovascular disease. Blood, 2011, 118, 6461-6464.	0.6	47
12	MicroRNAs in dysfunctional adipose tissue: cardiovascular implications. Cardiovascular Research, 2017, 113, 1024-1034.	1.8	42
13	MicroRNAâ€181b inhibits thrombinâ€mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10. FASEB Journal, 2016, 30, 3216-3226.	0.2	38
14	ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response. Biochemical and Biophysical Research Communications, 2012, 418, 116-121.	1.0	20
15	MiR-4674 regulates angiogenesis in tissue injury by targeting p38K signaling in endothelial cells. American Journal of Physiology - Cell Physiology, 2020, 318, C524-C535.	2.1	16
16	MiR-409-3p targets a MAP4K3-ZEB1-PLGF signaling axis and controls brown adipose tissue angiogenesis and insulin resistance. Cellular and Molecular Life Sciences, 2021, 78, 7663-7679.	2.4	12
17	Plasticity of Arterial and Venous Endothelial Cell Identity. Circulation Research, 2016, 119, 574-576.	2.0	5
18	Kruppel-Like Factor 10 (KLF10)-Deficient Mice Have Marked Defects In EPC Differentiation, Function, and Angiogenesis. Blood, 2010, 116, 4314-4314.	0.6	0