Constantinos G Neochoritis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/47258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorene-Based Multicomponent Reactions. Synlett, 2022, 33, 155-160.	1.8	6
2	Dibenzothiazepine Based MCR Chemistry. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
3	Local Anesthetics via Multicomponent Reactions. ChemMedChem, 2022, 17, .	3.2	3
4	Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. Molecules, 2022, 27, 4395.	3.8	2
5	Repurposing the HCV NS3–4A protease drug boceprevir as COVID-19 therapeutics. RSC Medicinal Chemistry, 2021, 12, 370-379.	3.9	58
6	A multicomponent tetrazolo indole synthesis. Chemical Communications, 2021, 57, 6652-6655.	4.1	9
7	Multicomponent reaction $\hat{a} \in \hat{a}$ derived covalent inhibitor space. Science Advances, 2021, 7, .	10.3	24
8	Still Relevant Today: The Asinger Multicomponent Reaction. ChemMedChem, 2021, 16, 1997-2020.	3.2	4
9	Optimized Inhibitors of MDM2 via an Attempted Proteinâ€Templated Reductive Amination. ChemMedChem, 2020, 15, 370-375.	3.2	5
10	The Ugi Threeâ€Component Reaction; a Valuable Tool in Modern Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 6525-6554.	2.4	39
11	Diaminoimidazopyrimidines: Access via the Groebke–Blackburn–Bienaymé Reaction and Structural Data Mining. European Journal of Organic Chemistry, 2020, 2020, 5601-5605.	2.4	8
12	Multicomponent Reactions: "Kinderleicht― Journal of Chemical Education, 2020, 97, 3739-3745.	2.3	30
13	TEAD–YAP Interaction Inhibitors and MDM2 Binders from DNAâ€Encoded Indoleâ€Focused Ugi Peptidomimetics. Angewandte Chemie, 2020, 132, 20518-20522.	2.0	10
14	TEAD–YAP Interaction Inhibitors and MDM2 Binders from DNAâ€Encoded Indoleâ€Focused Ugi Peptidomimetics. Angewandte Chemie - International Edition, 2020, 59, 20338-20342.	13.8	50
15	Multicomponent Peptide Stapling as a Diversityâ€Driven Tool for the Development of Inhibitors of Protein–Protein Interactions. Angewandte Chemie, 2020, 132, 5273-5279.	2.0	6
16	Multicomponent Peptide Stapling as a Diversityâ€Ðriven Tool for the Development of Inhibitors of Protein–Protein Interactions. Angewandte Chemie - International Edition, 2020, 59, 5235-5241.	13.8	29
17	Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2019, 182, 111588.	5.5	9
18	Isocyanideâ€Based Multicomponent Reactions of Free Phenylboronic Acids. European Journal of Organic Chemistry, 2019, 2019, 6132-6137.	2.4	7

#	Article	IF	CITATIONS
19	Rapid approach to complex boronic acids. Science Advances, 2019, 5, eaaw4607.	10.3	30
20	Tetrazoles via Multicomponent Reactions. Chemical Reviews, 2019, 119, 1970-2042.	47.7	403
21	A fluorinated indoleâ€based <scp>MDM</scp> 2 antagonist selectively inhibits the growth of p53 ^{wt} osteosarcoma cells. FEBS Journal, 2019, 286, 1360-1374.	4.7	13
22	Glycoconjugates via Phosphorus Ylides. European Journal of Organic Chemistry, 2019, 2019, 3632-3635.	2.4	1
23	Atorvastatin (Lipitor) by MCR. ACS Medicinal Chemistry Letters, 2019, 10, 389-392.	2.8	49
24	Design of indole- and MCR-based macrocycles as p53-MDM2 antagonists. Beilstein Journal of Organic Chemistry, 2019, 15, 513-520.	2.2	10
25	Structure and Reactivity of Glycosyl Isocyanides. European Journal of Organic Chemistry, 2019, 2019, 50-55.	2.4	2
26	Discovery of chromenes as inhibitors of macrophage migration inhibitory factor. Bioorganic and Medicinal Chemistry, 2018, 26, 999-1005.	3.0	8
27	Application of Silver Nanoparticles in the Multicomponent Reaction Domain: A Combined Catalytic Reduction Methodology to Efficiently Access Potential Hypertension or Inflammation Inhibitors. ACS Omega, 2018, 3, 16005-16013.	3.5	17
28	1,4,5-Trisubstituted Imidazole-Based p53–MDM2/MDMX Antagonists with Aliphatic Linkers for Conjugation with Biological Carriers. Journal of Medicinal Chemistry, 2017, 60, 4234-4244.	6.4	29
29	Manipulating a Multicomponent Reaction: A Straightforward Approach to Chromenopyrazole Hybrid Scaffolds. Synthesis, 2017, 49, 3619-3632.	2.3	8
30	Scaffold hopping <i>via</i> ANCHOR.QUERY: β-lactams as potent p53-MDM2 antagonists. MedChemComm, 2017, 8, 1046-1052.	3.4	21
31	Artificial Macrocycles as Potent p53–MDM2 Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 1025-1030.	2.8	28
32	Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2017, 126, 384-407.	5.5	30
33	How To Design a Successful p53–MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures. ChemMedChem, 2016, 11, 757-772.	3.2	84
34	First catalytic hetero-Diels–Alder reaction of imidazole-2-thiones and in silico biological evaluation of the cycloadducts. Tetrahedron, 2016, 72, 1742-1748.	1.9	5
35	Design of a novel thiophene inhibitor of 15-lipoxygenase-1 with both anti-inflammatory and neuroprotective properties. European Journal of Medicinal Chemistry, 2016, 122, 786-801.	5.5	30
36	The indoleacetic acids in IMCRs: a three-component Ugi reaction involving TosMIC. Tetrahedron, 2016, 72, 5149-5156.	1.9	9

#	Article	IF	CITATIONS
37	One-pot reaction of pyranoindolones with phenylisocyanates: a simple and regioselective approach to β-carbolines. Tetrahedron Letters, 2016, 57, 5453-5456.	1.4	2
38	Isocyanides as Influenzaâ€A Virus Subtype H5N1 Wildâ€⊺ype M2 Channel Inhibitors. ChemMedChem, 2015, 10, 1837-1845.	' 3.2	12
39	Leuckart–Wallach Route Toward Isocyanides and Some Applications. ACS Combinatorial Science, 2015, 17, 493-499.	3.8	28
40	Efficient Isocyanide-less Isocyanide-Based Multicomponent Reactions. Organic Letters, 2015, 17, 2002-2005.	4.6	63
41	Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids. Organic Letters, 2015, 17, 4980-4983.	4.6	55
42	Leuckart–Wallach Approach to Sugar Isocyanides and Its IMCRs. Synthesis, 2015, 47, 2407-2413.	2.3	18
43	Rational Development of a Potent 15-Lipoxygenase-1 Inhibitor with <i>in Vitro</i> and <i>ex Vivo</i> Anti-inflammatory Properties. Journal of Medicinal Chemistry, 2015, 58, 7850-7862.	6.4	40
44	2,3′-Bis(1′H-indole) heterocycles: New p53/MDM2/MDMX antagonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5661-5666.	2.2	32
45	p53–MDM2 and MDMX Antagonists. Annual Reports in Medicinal Chemistry, 2014, 49, 167-187.	0.9	10
46	Dimethyl Acetylenedicarboxylate: A Versatile Tool in Organic Synthesis. Synthesis, 2014, 46, 537-585.	2.3	53
47	Towards a facile and convenient synthesis of highly functionalized indole derivatives based on multi-component reactions. Organic and Biomolecular Chemistry, 2014, 12, 1649-1651.	2.8	20
48	Azodicarboxylates: valuable reagents for the multicomponent synthesis of novel 1,3,4-thiadiazoles and imidazo[2,1-b][1,3,4]thiadiazoles. Tetrahedron, 2013, 69, 5008-5015.	1.9	12
49	One-pot microwave assisted synthesis of new 2-alkoxycarbonylmethylene-4-oxo-1,5-benzo-, naphtho-, and pyridodiazepines and assessment of their cytogenetic activity. European Journal of Medicinal Chemistry, 2013, 67, 302-309.	5.5	27
50	One-Pot DBU-Promoted Synthesis of Hydroacridinones and Spirohexahydropyrimidines. Synlett, 2013, 24, 2768-2772.	1.8	6
51	Synthesis of 2-Keto-imidazoles Utilizing <i>N</i> -Arylamino-Substituted N-Heterocyclic Carbenes. Journal of Organic Chemistry, 2011, 76, 1468-1471.	3.2	8
52	Oneâ€Pot Regioselective Doubleâ€Mannich Annulations Affording Azabicyclononanones as a Key Step in the Synthesis of Natural Products. European Journal of Organic Chemistry, 2011, 2011, 5336-5346.	2.4	10
53	One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones. European Journal of Medicinal Chemistry, 2011, 46, 297-306.	5.5	77
54	A thorough study on the reaction of DMAD with 1-arylaminoimidazole-2-thiones. Expeditious synthesis of imidazo[2,1-b][1,3]thiazoles through a novel arylamino rearrangement. Tetrahedron, 2010, 66, 709-714.	1.9	12

#	Article	IF	CITATIONS
55	1,5-Benzoxazepines vs 1,5-Benzodiazepines. One-Pot Microwave-Assisted Synthesis and Evaluation for Antioxidant Activity and Lipid Peroxidation Inhibition. Journal of Medicinal Chemistry, 2010, 53, 8409-8420.	6.4	68
56	Heterocyclizations via TosMIC-Based Multicomponent Reactions: A New Approach to One-Pot Facile Synthesis of Substituted Quinoxaline Derivatives. Synlett, 2009, 2009, 302-305.	1.8	9
57	1-Arylaminoimidazole-2-thiones as intermediates in the synthesis of imidazo[2,1-b][1,3,4]thiadiazines. Tetrahedron, 2008, 64, 3527-3533.	1.9	14
58	A Versatile One-Pot Synthesis of β-Carbolines by Reaction of Pyranoindolones with Phenyl- and Benzoylhydrazine. Synthesis, 2008, 2008, 3273-3278.	2.3	2
59	Unexpected Opening of the Benzodiazepine Ring During Acetylation. Letters in Organic Chemistry, 2008, 5, 22-25.	0.5	2
60	A Versatile One-Pot Synthesis of Fused Polycyclic Imidazole-naphthoquinone Derivatives through Imidazole-4,5-quinodimethane Generation Followed by Diels-Alder Cycloaddition. Synlett, 2007, 2007, 2596-2598.	1.8	0
61	The first application of an imidazole o-quinodimethane in Diels–Alder reactions leading to the synthesis of benzimidazoles. Tetrahedron Letters, 2007, 48, 2275-2277.	1.4	6
62	Convenient synthesis of polybrominated imidazole building blocks. Arkivoc, 2007, 2007, 101-111.	0.5	7