
Hilmi Amiruddin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4725652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lubrication mechanisms of hexagonal boron nitride nano-additives water-based lubricant for steel–steel contact. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1038-1046.	1.8	18
2	Effect of fibre length and composition on the tribological attributes of oil palm fibre polymeric composite: organic brake friction material. Industrial Lubrication and Tribology, 2021, 73, 614-620.	1.3	1
3	CNGDI Engine Performance Using a Vaned Diffuser Turbocharger Compressor with Varying Injection Timings. Evergreen, 2021, 8, 414-420.	0.5	Ο
4	3D printing parameters of acrylonitrile butadiene styrene polymer for friction and wear analysis using response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 468-477.	1.8	18
5	Optimisation of graphene grown from solid waste using CVD method. International Journal of Advanced Manufacturing Technology, 2020, 106, 211-218.	3.0	12
6	Measurement of roller chain wear lubricated with palm oil-based hexagonal boron nitride nanoparticles. Industrial Lubrication and Tribology, 2020, 72, 1199-1204.	1.3	4
7	Tribological performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber using a CVD method. Industrial Lubrication and Tribology, 2020, 72, 771-777.	1.3	8
8	Correlation of tribo-mechanical properties of internal geometry structures of fused filament fabrication 3D-printed acrylonitrile butadiene styrene. Industrial Lubrication and Tribology, 2020, 72, 1259-1265.	1.3	6
9	Synergistic effect of loads and speeds on the dry sliding behaviour of fused filament fabrication 3D-printed acrylonitrile butadiene styrene pins with different internal geometries. International Journal of Advanced Manufacturing Technology, 2020, 108, 2525-2539.	3.0	4
10	Experimental analysis of tribological performance of palm oil blended with hexagonal boron nitride nanoparticles as an environment-friendly lubricant. International Journal of Advanced Manufacturing Technology, 2020, 106, 4183-4191.	3.0	21
11	Influence of contact pressure and sliding speed dependence on the tribological characteristics of an activated carbon-epoxy composite derived from palm kernel under dry sliding conditions. Friction, 2019, 7, 227-236.	6.4	22
12	The tribological potential of graphene growth from solid waste. Progress in Industrial Ecology, 2019, 13, 401.	0.2	1
13	Comparative study of the tribological behaviour of 3D-printed and moulded ABS under lubricated condition. Materials Research Express, 2019, 6, 085328.	1.6	16
14	Lubricant and tribological properties of zinc compound in palm oil. Industrial Lubrication and Tribology, 2019, 71, 1177-1185.	1.3	4
15	Friction Reduction of Palm Kernel Activated Carbon Polymer Composite by Lubricant Impregnation. Tribology Online, 2019, 14, 411-416.	0.9	1
16	Frictional characteristics of laser surface textured activated carbon composite derived from palm kernel. International Journal of Advanced Manufacturing Technology, 2018, 95, 2943-2949.	3.0	2
17	A brief review on the wear mechanisms and interfaces of carbon based materials. Composite Interfaces, 2018, 25, 491-513.	2.3	15
18	Effect of hydrogen on graphene growth from solid waste products by chemical vapour deposition: friction coefficient properties. Industrial Lubrication and Tribology, 2018, 72, 181-188.	1.3	6

Hilmi Amiruddin

#	Article	IF	CITATIONS
19	Investigation of the pressure ratio and efficiency of a turbocharger centrifugal compressor with a vaned diffuser. World Review of Science, Technology and Sustainable Development, 2018, 14, 228.	0.4	0
20	Tribological properties of palm oil blended with zinc dioctyldithiophosphate. Materials Research Express, 2018, 5, 085505.	1.6	6
21	Effect of operating parameters and chemical treatment on the tribological performance of natural fiber composites: A review. Particulate Science and Technology, 2017, 35, 512-524.	2.1	11
22	Optimization of friction properties of kenaf polymer composite as an alternative friction material. Industrial Lubrication and Tribology, 2017, 69, 259-266.	1.3	8
23	Application of Taguchi method in optimization of design parameter for turbocharger vaned diffuser. Industrial Lubrication and Tribology, 2017, 69, 409-413.	1.3	5
24	Frictional wear stability mechanisms of an activated carbon composite derived from palm kernel by phase transformation study. Industrial Lubrication and Tribology, 2017, 69, 945-951.	1.3	7
25	The effect of dimple size on the tribological performances of a laser surface textured palm kernel activated carbon-epoxy composite. Industrial Lubrication and Tribology, 2017, 69, 768-774.	1.3	5
26	Statistical models for predicting wear and friction coefficient of palm kernel activated carbon-epoxy composite using the ANOVA. Industrial Lubrication and Tribology, 2017, 69, 761-767.	1.3	3
27	Tribological effects of nano-based engine oil diluted with biodiesel fuel. International Journal of Surface Science and Engineering, 2017, 11, 12.	0.4	3
28	Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger. MATEC Web of Conferences, 2017, 124, 07004.	0.2	0
29	Tribological characteristics comparison for oil palm fibre/epoxy and kenaf fibre/epoxy composites under dry sliding conditions. Tribology International, 2016, 101, 247-254.	5.9	67
30	The potential of hBN nanoparticles as friction modifier and antiwear additive in engine oil. Mechanics and Industry, 2016, 17, 104.	1.3	21
31	Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil. Industrial Lubrication and Tribology, 2016, 68, 441-445.	1.3	59
32	The effect of sliding distance at different temperatures on the tribological properties of a palm kernel activated carbon–epoxy composite. Tribology International, 2016, 94, 352-359.	5.9	19
33	Effect of Diluted Nano-Oil on the Anti-Wear and Friction Properties. Advanced Materials Research, 2016, 1133, 452-456.	0.3	1
34	FRICTIONAL PROPERTIES OF PALM KERNEL ACTIVATED CARBON-EPOXY COMPOSITE UNDER VARIOUS NORMAL LOADS. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	0
35	The Effect of Temperature on the Tribological Properties of Palm Kernel Activated Carbon-Epoxy Composite. Tribology Online, 2015, 10, 428-433.	0.9	8
36	Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method. Materials & Design, 2015, 67, 577-582.	5.1	84

Hilmi Amiruddin

#	Article	IF	CITATIONS
37	THERMAL PERFORMANCE OF ÂμPCM/MWCNT COMPOSITES AT DIFFERENT AMBIENT TEMPERATURES. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	0
38	Effect of hBN/Al2O3 Nanoparticle Additives on the Tribological Performance of Engine Oil. Jurnal Teknologi (Sciences and Engineering), 2014, 66, .	0.4	9
39	Experimental Study on Friction and Wear Behaviors of Ball Bearings under Gas Lubricated Conditions. Jurnal Teknologi (Sciences and Engineering), 2014, 66, .	0.4	1
40	Materials selection for eco-aware lightweight friction material. Mechanics and Industry, 2014, 15, 279-285.	1.3	10
41	Optimization of Tribological Performance of hBN/AL2O3Nanoparticles as Engine Oil Additives. Procedia Engineering, 2013, 68, 313-319.	1.2	47
42	Elastohydrodynamics Lubrication for Bio-based Lubricants in Elliptical Conjunction. Procedia Engineering, 2013, 68, 123-129.	1.2	6
43	Design Optimization of Thermal Management System for Electric VehicleUtilizing CFD Analysis, DFMEA and CES. Procedia Engineering, 2013, 68, 305-312.	1.2	6
44	Frictional Behavior of Bearing Material under Gas Lubricated Conditions. Procedia Engineering, 2013, 68, 688-693.	1.2	9
45	Improving Engine Oil Properties by Dispersion of hBN/Al ₂ O ₃ Nanoparticles. Applied Mechanics and Materials. 0, 607, 70-73	0.2	8