Emma Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4725561/publications.pdf

Version: 2024-02-01

34	847	14	27
papers	citations	h-index	g-index
38	38	38	1617 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Dissecting the transcriptome in cardiovascular disease. Cardiovascular Research, 2022, 118, 1004-1019.	1.8	16
2	COVID-19 and BRD4: a stormy and cardiotoxic bromo-romance., 2022, 2, .		2
3	NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction. Cardiovascular Research, 2022, 118, 2973-2984.	1.8	10
4	MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy. Cells, 2022, 11, 604.	1.8	8
5	Reversible lysine fatty acylation of an anchoring protein mediates adipocyte adrenergic signaling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
6	Noncoding RNAs in age-related cardiovascular diseases. Ageing Research Reviews, 2022, 77, 101610.	5.0	33
7	Unlocking the Value of White Blood Cells for Heart Failure Diagnosis. Journal of Cardiovascular Translational Research, 2021, 14, 53-62.	1.1	12
8	Cardiac epigenetics: Driving signals to the cardiac epigenome in development and disease. Journal of Molecular and Cellular Cardiology, 2021, 151, 88.	0.9	6
9	Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovascular Research, 2021, 117, 1823-1840.	1.8	17
10	Leveraging non-coding RNAs to fight cardiovascular disease: the EU-CardioRNA network. European Heart Journal, 2021, 42, 4881-4883.	1.0	12
11	Human embryonic stem cell-derived cardiomyocyte platform screens inhibitors of SARS-CoV-2 infection. Communications Biology, 2021, 4, 926.	2.0	11
12	DUSP5-mediated inhibition of smooth muscle cell proliferation suppresses pulmonary hypertension and right ventricular hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H382-H389.	1.5	10
13	Cat-apulting Toward a Molecular Understanding of HFpEF. JACC Basic To Translational Science, 2021, 6, 673-675.	1.9	O
14	Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Science Translational Medicine, 2020, 12, .	5.8	39
15	Approaching Sex Differences in Cardiovascular Non-Coding RNA Research. International Journal of Molecular Sciences, 2020, 21, 4890.	1.8	12
16	Distinct Cardiac Transcriptomic Clustering in Titin and Lamin A/C-Associated Dilated Cardiomyopathy Patients. Circulation, 2020, 142, 1230-1232.	1.6	7
17	Anthracycline-Related Heart Failure: Certain Knowledge and Open Questions. Current Heart Failure Reports, 2020, 17, 357-364.	1.3	8
18	Genes encoding ACE2, TMPRSS2 and related proteins mediating SARS-CoV-2 viral entry are upregulated with age in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2020, 147, 88-91.	0.9	21

#	Article	IF	CITATIONS
19	Risk of bias in studies investigating novel diagnostic biomarkers for heart failure with preserved ejection fraction. A systematic review. European Journal of Heart Failure, 2020, 22, 1586-1597.	2.9	16
20	Regulatory RNAs in Heart Failure. Circulation, 2020, 141, 313-328.	1.6	133
21	Mutations in <i>PDLIM5</i> are rare in dilated cardiomyopathy but are emerging as potential disease modifiers. Molecular Genetics & Enomic Medicine, 2020, 8, e1049.	0.6	11
22	Call to action for the cardiovascular side of COVID-19. European Heart Journal, 2020, 41, 1796-1797.	1.0	12
23	The Missing "lnc―between Genetics and Cardiac Disease. Non-coding RNA, 2020, 6, 3.	1.3	5
24	Myofibroblast Phenotype and Reversibility of Fibrosis in Patients With End-Stage Heart Failure. Journal of the American College of Cardiology, 2019, 73, 2267-2282.	1.2	119
25	Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Non-coding RNA, 2019, 5, 31.	1.3	14
26	Contractile responses to endothelin-1 are regulated by PKC phosphorylation of cardiac myosin binding protein-C in rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2018, 117, 1-18.	0.9	19
27	Overexpression of integrin $\langle i \rangle \hat{l} \pm \langle i \rangle 11$ induces cardiac fibrosis in mice. Acta Physiologica, 2018, 222, e12932.	1.8	21
28	Hepatocyte-Specific SR-BI Gene Transfer Corrects Cardiac Dysfunction in Scarb1 -Deficient Mice and Improves Pressure Overload-Induced Cardiomyopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2028-2040.	1.1	24
29	Resistance to retinopathy development in obese, diabetic and hypertensive ZSF1 rats: an exciting model to identify protective genes. Scientific Reports, 2018, 8, 11922.	1.6	4
30	Lnc'ing Ca 2+ , SERCA and cardiac disease. Cell Calcium, 2018, 72, 132-134.	1.1	7
31	Endothelin-1 promotes hypertrophic remodelling of cardiac myocytes by activating sustained signalling and transcription downstream of endothelin type A receptors. Cellular Signalling, 2017, 36, 240-254.	1.7	48
32	The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. Journal of Clinical Investigation, 2016, 127, 335-348.	3.9	99
33	Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. Journal of Molecular and Cellular Cardiology, 2015, 82, 174-183.	0.9	45
34	The landscape of DNA repeat elements in human heart failure. Genome Biology, 2012, 13, R90.	13.9	33